| 研究生: |
楊雅純 Yang, Ya-Chun |
|---|---|
| 論文名稱: |
高導熱氮化鋁/高分子複合材料開發及其流變性質探討 High Thermal Conductivity Aluminum Nitride/ Polymer Composites and its Rheological Properties |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 氮化鋁 、複合材料 、熱傳導值 |
| 外文關鍵詞: | AlN, composites, thermal conductivity |
| 相關次數: | 點閱:58 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究所使用之氮化鋁主要為本實驗室以不同鋁粉(包括Transmet、Ecka及遠洋等不同廠牌之鋁粉)經由燃燒合成而得(為進行比較,部分實驗亦使用合作公司提供之氮化鋁,代號為sample1、2、3、4)。本研究發現將實驗室合成之氮化鋁初產物進行乾式滾磨及濕式滾磨處理,於同樣滾磨時間下,乾式滾磨無法拆散部分團聚物,濕式滾磨則能有效將大部分團聚分散成單一顆粒(經四小時滾磨,乾式滾磨平均粒徑約為13 μm,濕式滾磨約為9 μm)。氮化鋁經滾磨後,吾人將之加入不同基材(包括液態環氧樹脂、固態環氧成型模料及室溫硫化縮合型灌封膠等),製作成氮化鋁/高分子複合材料進行流動性及熱傳導值探討及比較。於氮化鋁/液態環氧成型模料進行垂流法測試中,顯示出填充濕式滾磨後之氮化鋁皆較乾式滾磨粉體流動性佳,在符合要求之流動性下,固含量可填至78.3 wt%,甚至達到如同公司最佳產品sample1之固含量80 wt%,然而在不同複合材料測試中,發現不同氮化鋁會顯現出不一樣之流變行為,垂流法測試中,流動性最佳為sample1,而在環氧成型模料及矽橡膠中則為Transmet鋁粉合成之氮化鋁較佳,Transmet鋁粉合成之氮化鋁於環氧成型模料中不僅有最低之震盪力矩趨勢,而其熱傳導值(在相同的體積含量下)可從公司樣品2.45 W/m·K提升至9.11 W/m·K,應用於矽橡膠中(在合於要求流動性下)有最高固體添加量75 wt%,亦能將熱傳導值從0.3 W/m·K提升至1.66 W/m·K。
AlN used in this research is mainly obtained by combustion synthesis of different aluminum powders in the laboratory (including aluminum powders of different brands such as Transmet, Ecka, and Yuanyang). For comparison, some experiments also use the AlN from a cooperation company, codenamed sample1, 2, 3, and 4. This study found that the initial AlN product synthesized in the laboratory after dry milling and wet milling under the same milling time, part of the agglomerates after dry milling could not be dispersed, while wet milling could effectively disperse most of the agglomerates into single particles (after four hours milling, the average particle size of dry milling is about 13 μm, and the wet milling is about 9 μm). AlN after milling was added to different substrates (including liquid epoxy resin, solid epoxy molding compound, and room temperature vulcanization condensation type potting compound, etc.). Fabrication of AlN/polymer composites for comparison of fluidity and thermal conductivity. In the sagging method test of liquid epoxy resin, it is shown that the fluidity of AlN after wet milling is better than the dry milling product, and the solid content can be filled to 78.3 wt%, even reaching the best as sample1 80 wt%, However, in the testing of different composites, it was shown that AlN will have different rheological behaviors. In the sagging method test, the best fluidity is sample1, while in the epoxy molding compound and silicone rubber systems, AlN synthesized by Transmet aluminum powder is preferred. It not only has the lowest oscillation torque, but its thermal conductivity (under the same volume content) can be increased from 2.45 W/m·K to 9.11 W/m·K, and used in silicone rubber (under the required fluidity) also has a maximum solid content of 75 wt%, which can increase the thermal conductivity from 0.3 W/m·K to 1.66 W/m·K.
1. Zheng, M. T., Dong, H. W., Xiao, Y., Liu, S. T., Hu, H., Liang, Y. R., Sun, L. Y., and Liu, Y. L. Facile one-step and high-yield synthesis of few layered and hierarchically porous boron nitride nanosheets. Rsc Advances. 6, 45402-45409, 2016
2. Zhang, J. X., Cheng, H., Chen, Y. Z., Uddin, A., Yuan, S., Geng, S. J., and Zhang, S. Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering. Surface & Coatings Technology, 198, 68 -73, 2005.
3. LED的散熱管理,昕煒達科技有限公司(http://www.new-wonder.com.tw/?led%E7%9A%84%E6%95%A3%E7%86%B1%E7%AE%A1%E7%90%86,42)
4. 林益生、許蓁容、何宗漢、伍玉真、鄧希哲,「環氧成型模料對構裝後晶片可靠度的影響」,工程科技與教育學刊第7卷第4期,第532-545頁,2010年10月.
5. Su, C. C., Wei, C. H., and Li, B. C. Thermal and Cure Kinetics of Epoxy Molding Compounds Cured with Thermal Latency Accelerators. Advances in Materials Science and Engineering, 9, 2013.
6. 張豐志,應用高分子手冊,2003年2月
7. Ogonowski, S., Wołosiewicz-Głąb, M., Ogonowski, Z., Foszcz, D., and Pawełczyk, M. Comparison of wet and dry grinding in electromagnetic mill. Minerals, 8(4), 138, 2018
8. Lin, I., and Somasundaran, P. Alterations in properties of samples during their preparation by grinding. Powder Technology, 6(3), 171-179, 1972
9. Lowrison, G.C. Crushing and grinding: the size reduction of solid materials. 1974
10. Suzuki, A., and Tanaka, T. Crushing efficiency in relation to some operational variables and material constants. Industrial & Engineering Chemistry Process Design and Development, 7(2), 161-166, 1968
11. Feng, D., and Aldrich, C. A comparison of the flotation of ore from the Merensky Reef after wet and dry grinding. International Journal of Mineral Processing, 60(2), 115-129, 2000
12. Ozkan, A., Yekeler, M., and Calkaya, M. Kinetics of fine wet grinding of zeolite in a steel ball mill in comparison to dry grinding. International Journal of Mineral Processing, 90(1-4), 67-73, 2009
13. Austin, L. G., Klimpel, R. R., and Luckie, P. T. Process engineering of size reduction: ball milling. Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1984
14. Chelgani, S. C., Parian, M., Parapari, P. S., Ghorbani, Y., and Rosenkranz, J. A comparative study on the effects of dry and wet grinding on mineral flotation separation–a review. Journal of Materials Research and Technology, 8(5), 5004-5011, 2019
15. Nooshabadi, A. J., Larsson, A. C., and Kota, H. R. Formation of hydrogen peroxide by pyrite and its influence on flotation. Minerals Engineering, 49, 128-134, 2013
16. Olhero, S. M., Novak, S., Oliveira, M., Krnel, K., Kosmac, T., and Ferreira, J. M. F. A thermo-chemical surface treatment of AlN powder for the aqueous processing of AlN ceramics. Journal of materials research, 19(3), 746-751, 2004
17. Pacheco, M. M., Bouma, R. H. B., and Katgerman, L. Combustion synthesis of TiB 2-based cermets: modeling and experimental results. Applied Physics A, 90(1), 159-163, 2008
18. Anoop, K. B., Kabelac, S., Sundararajan, T., and Das, S. K. Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. Journal of applied physics, 106(3), 034909, 2009
19. Mewis, J. and Wagner, N.J., Colloidal Suspension Rheology. Cambridge University Press, 2012
20. Rheology Theory and Applications. TA Instruments. 2019
21. An, Z. Q., Zhang, Y. L., Li, Q., Wang, H. R., Guo, Z. C., and Zhu, J. Effect of particle shape on the apparent viscosity of liquid–solid suspensions. Powder Technology. 328, 199-206, 2018.
22. Zheng, M. T., Dong, H. W., Xiao, Y., Liu, S. T., Hu, H., Liang, Y. R., Sun, L. Y., and Liu, Y. L. Facile one-step and high-yield synthesis of few layered and hierarchically porous boron nitride nanosheets. Rsc Advances. 6, 45402-45409, 2016.
23. Ancey, C., and Jorrot, H. Yield stress for particle suspensions within a clay dispersion, Journal of Rheology, 45, 297-319, 2001
24. Ancey, C. Role of lubricated contacts in concentrated polydisperse suspensions, Journal of Rheology, 45, 1421-1439, 2001
25. Lewis, J. A. Colloidal Processing of Ceramics. Journal of the American Ceramic Society, 83(10), 2341–59, 2000
26. Bae, J. W., Kim, W., Cho, S. H., and Lee, S. H. The Properties of AIN-Filled Epoxy Molding Compounds by the Effects of Filler Size Distribution. Journal of Materials Science, 35(23), 5907-5913, 2000
27. Gebrehiwot, S. Manufacturing and Rheological Analysis of Spiral Flow Test Piece. Degree Thesis Plastics Technology, 2014
28. Linec, M., and Music, B. The Effects of Silica-Based Fillers on the Properties of Epoxy Molding Compounds, Materials, 12(11), 11, 2019
29. Venkatesulu, B. Y. T. M. J., and Thomas, M. J. Erosion resistance of alumina-filled silicone rubber nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 17(2), 615-624, 2010
30. Nazir, M. T., Phung, B. T., Yu, S., & Li, S. Effects of thermal properties on tracking and erosion resistance of micro-ATH/AlN/BN filled silicone rubber composites. IEEE Transactions on Dielectrics and Electrical Insulation, 25(6), 2076-2085, 2018
31. Rheology Theory and Applications. TA Instruments. 2016
32. 王唯侖,氮化鋁/環氧成型模料之流變性及熱傳導性質探討;國立成功大學碩士論文, 2020
33. 德商阿博格國際液態矽膠技術研討會,2019
34. Functional Silicone Reactivity Guide, Gelest
35. van Der Weij, F. W. The action of tin compounds in condensation‐type RTV silicone rubbers. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 181(12), 2541-2548, 1980
36. 吳俊雄,最新橡膠技術。臺北市,高立圖書有限公司,1984
37. 葉明國,橡膠化學與技術。臺北市,茂文圖書有限公司,1983
38. 謝宗霖,燃燒合成六方晶氮化硼製程開發及氮化鋁/高分子複合材料之流變性探討,2019
39. 廖平喜,高分子流變學。新竹市,楊國藩,1982
40. Bröckel, U., Meier, W., & Wagner, G. (Eds.). Product design and engineering: formulation of gels and pastes. John Wiley & Sons, 2013
校內:2025-07-03公開