簡易檢索 / 詳目顯示

研究生: 楊雅純
Yang, Ya-Chun
論文名稱: 高導熱氮化鋁/高分子複合材料開發及其流變性質探討
High Thermal Conductivity Aluminum Nitride/ Polymer Composites and its Rheological Properties
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 119
中文關鍵詞: 氮化鋁複合材料熱傳導值
外文關鍵詞: AlN, composites, thermal conductivity
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究所使用之氮化鋁主要為本實驗室以不同鋁粉(包括Transmet、Ecka及遠洋等不同廠牌之鋁粉)經由燃燒合成而得(為進行比較,部分實驗亦使用合作公司提供之氮化鋁,代號為sample1、2、3、4)。本研究發現將實驗室合成之氮化鋁初產物進行乾式滾磨及濕式滾磨處理,於同樣滾磨時間下,乾式滾磨無法拆散部分團聚物,濕式滾磨則能有效將大部分團聚分散成單一顆粒(經四小時滾磨,乾式滾磨平均粒徑約為13 μm,濕式滾磨約為9 μm)。氮化鋁經滾磨後,吾人將之加入不同基材(包括液態環氧樹脂、固態環氧成型模料及室溫硫化縮合型灌封膠等),製作成氮化鋁/高分子複合材料進行流動性及熱傳導值探討及比較。於氮化鋁/液態環氧成型模料進行垂流法測試中,顯示出填充濕式滾磨後之氮化鋁皆較乾式滾磨粉體流動性佳,在符合要求之流動性下,固含量可填至78.3 wt%,甚至達到如同公司最佳產品sample1之固含量80 wt%,然而在不同複合材料測試中,發現不同氮化鋁會顯現出不一樣之流變行為,垂流法測試中,流動性最佳為sample1,而在環氧成型模料及矽橡膠中則為Transmet鋁粉合成之氮化鋁較佳,Transmet鋁粉合成之氮化鋁於環氧成型模料中不僅有最低之震盪力矩趨勢,而其熱傳導值(在相同的體積含量下)可從公司樣品2.45 W/m·K提升至9.11 W/m·K,應用於矽橡膠中(在合於要求流動性下)有最高固體添加量75 wt%,亦能將熱傳導值從0.3 W/m·K提升至1.66 W/m·K。

    AlN used in this research is mainly obtained by combustion synthesis of different aluminum powders in the laboratory (including aluminum powders of different brands such as Transmet, Ecka, and Yuanyang). For comparison, some experiments also use the AlN from a cooperation company, codenamed sample1, 2, 3, and 4. This study found that the initial AlN product synthesized in the laboratory after dry milling and wet milling under the same milling time, part of the agglomerates after dry milling could not be dispersed, while wet milling could effectively disperse most of the agglomerates into single particles (after four hours milling, the average particle size of dry milling is about 13 μm, and the wet milling is about 9 μm). AlN after milling was added to different substrates (including liquid epoxy resin, solid epoxy molding compound, and room temperature vulcanization condensation type potting compound, etc.). Fabrication of AlN/polymer composites for comparison of fluidity and thermal conductivity. In the sagging method test of liquid epoxy resin, it is shown that the fluidity of AlN after wet milling is better than the dry milling product, and the solid content can be filled to 78.3 wt%, even reaching the best as sample1 80 wt%, However, in the testing of different composites, it was shown that AlN will have different rheological behaviors. In the sagging method test, the best fluidity is sample1, while in the epoxy molding compound and silicone rubber systems, AlN synthesized by Transmet aluminum powder is preferred. It not only has the lowest oscillation torque, but its thermal conductivity (under the same volume content) can be increased from 2.45 W/m·K to 9.11 W/m·K, and used in silicone rubber (under the required fluidity) also has a maximum solid content of 75 wt%, which can increase the thermal conductivity from 0.3 W/m·K to 1.66 W/m·K.

    摘要 II Abstract III Extended Abstract IV 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XVI 第一章 緒論 1 1-1 氮化鋁性質探討 1 1-2 環氧成型模料 4 1-3 矽橡膠灌封材 7 1-4 無機填充材性質探討 8 第二章 基礎理論與文獻回顧 10 2-1 乾濕式研磨相關文獻探討 10 2-2 團聚對流動性之影響 12 2-3 流變儀性質探討 14 2-4 影響懸浮液流動性之相關原理 16 2-5 氮化鋁與環氧成型模料之熱傳導值與流動性探討 20 2-6 RTV-2矽橡膠硬化理論 24 2-7 研究動機 28 第三章 實驗室裝置與藥品 29 3-1 分析儀器 29 3-1-1 粒徑分析儀 29 3-1-2 高解析場發射掃描式電子顯微鏡與能量分散光譜儀 30 3-1-3 比表面積分析儀 31 3-1-4 迴旋式磁流變分析儀 32 3-1-5 熱傳導量測儀 33 3-1-6 試片密度及孔隙度量測裝置 34 3-1-7 傅立葉轉換式紅外線光譜儀 35 3-1-8 熱重分析儀 37 3-2 實驗設備及器材 38 3-2-1 電子天秤 38 3-2-2 超音波震盪清洗器 38 3-2-3 電磁加熱攪拌器 38 3-2-4 真空烘箱 38 3-2-5 熱壓成型機及可程式控制器 38 3-2-6 拋光機 39 3-2-7 箱型高溫爐 39 3-2-8 手動油壓機 39 3-2-9 球磨架 40 3-3 藥品 40 第四章 實驗方法 42 4-1 實驗室自行合成之氮化鋁後處理 42 4-2 氮化鋁/液態環氧樹脂 42 4-2-1 氮化鋁改質方法 43 4-2-2 垂流法測試 43 4-3 氮化鋁/環氧成型模料 43 4-3-1 環氧成型模料製備與試錠製作 44 4-3-2 環氧成型模料流動性檢驗 45 4-4 氮化鋁/室溫硫化縮合型灌封膠 46 4-4-1 室溫硫化縮合型灌封膠硬化 46 4-4-2 室溫硫化縮合型灌封膠熱傳導值試錠製作 47 4-5 懸浮液流變性質檢測 47 第五章 結果與討論 48 5-1 氮化鋁種類與前處理 48 5-1-1 氮化鋁乾式滾磨製程 48 5-1-2 氮化鋁濕式滾磨製程 55 5-1-3 乾磨與濕磨比較 59 5-2 氮化鋁/液態環氧樹脂流動性檢驗 62 5-2-1 公司氮化鋁樣品垂流法檢測 63 5-2-2 遠洋鋁粉合成之氮化鋁流動性探討 69 5-2-3 Ecka鋁粉合成之氮化鋁流動性探討 71 5-3 氮化鋁/環氧成型模料開發 77 5-3-1 實驗室先前開發與業界產品探討 77 5-3-2 遠洋鋁粉合成之氮化鋁環氧成型模料流動性探討 81 5-3-3 Transmet鋁粉合成之氮化鋁環氧成型模料流動性探討 85 5-3-4 氮化鋁環氧成型模料熱傳導值 89 5-4 氮化鋁/室溫硫化縮合型灌封膠開發 92 5-4-1 室溫硫化縮合型灌封膠硬化劑開發 93 5-4-2 氮化鋁/室溫硫化縮合型灌封膠硬化劑調配 102 5-4-3 氮化鋁/室溫硫化縮合型灌封膠流動性及熱傳導值探討 105 5-5 不同複合材料系統流動性比較 108 第六章 結論 112 第七章 參考文獻 116

    1. Zheng, M. T., Dong, H. W., Xiao, Y., Liu, S. T., Hu, H., Liang, Y. R., Sun, L. Y., and Liu, Y. L. Facile one-step and high-yield synthesis of few layered and hierarchically porous boron nitride nanosheets. Rsc Advances. 6, 45402-45409, 2016
    2. Zhang, J. X., Cheng, H., Chen, Y. Z., Uddin, A., Yuan, S., Geng, S. J., and Zhang, S. Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering. Surface & Coatings Technology, 198, 68 -73, 2005.
    3. LED的散熱管理,昕煒達科技有限公司(http://www.new-wonder.com.tw/?led%E7%9A%84%E6%95%A3%E7%86%B1%E7%AE%A1%E7%90%86,42)
    4. 林益生、許蓁容、何宗漢、伍玉真、鄧希哲,「環氧成型模料對構裝後晶片可靠度的影響」,工程科技與教育學刊第7卷第4期,第532-545頁,2010年10月.
    5. Su, C. C., Wei, C. H., and Li, B. C. Thermal and Cure Kinetics of Epoxy Molding Compounds Cured with Thermal Latency Accelerators. Advances in Materials Science and Engineering, 9, 2013.
    6. 張豐志,應用高分子手冊,2003年2月
    7. Ogonowski, S., Wołosiewicz-Głąb, M., Ogonowski, Z., Foszcz, D., and Pawełczyk, M. Comparison of wet and dry grinding in electromagnetic mill. Minerals, 8(4), 138, 2018
    8. Lin, I., and Somasundaran, P. Alterations in properties of samples during their preparation by grinding. Powder Technology, 6(3), 171-179, 1972
    9. Lowrison, G.C. Crushing and grinding: the size reduction of solid materials. 1974
    10. Suzuki, A., and Tanaka, T. Crushing efficiency in relation to some operational variables and material constants. Industrial & Engineering Chemistry Process Design and Development, 7(2), 161-166, 1968
    11. Feng, D., and Aldrich, C. A comparison of the flotation of ore from the Merensky Reef after wet and dry grinding. International Journal of Mineral Processing, 60(2), 115-129, 2000
    12. Ozkan, A., Yekeler, M., and Calkaya, M. Kinetics of fine wet grinding of zeolite in a steel ball mill in comparison to dry grinding. International Journal of Mineral Processing, 90(1-4), 67-73, 2009
    13. Austin, L. G., Klimpel, R. R., and Luckie, P. T. Process engineering of size reduction: ball milling. Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1984
    14. Chelgani, S. C., Parian, M., Parapari, P. S., Ghorbani, Y., and Rosenkranz, J. A comparative study on the effects of dry and wet grinding on mineral flotation separation–a review. Journal of Materials Research and Technology, 8(5), 5004-5011, 2019
    15. Nooshabadi, A. J., Larsson, A. C., and Kota, H. R. Formation of hydrogen peroxide by pyrite and its influence on flotation. Minerals Engineering, 49, 128-134, 2013
    16. Olhero, S. M., Novak, S., Oliveira, M., Krnel, K., Kosmac, T., and Ferreira, J. M. F. A thermo-chemical surface treatment of AlN powder for the aqueous processing of AlN ceramics. Journal of materials research, 19(3), 746-751, 2004
    17. Pacheco, M. M., Bouma, R. H. B., and Katgerman, L. Combustion synthesis of TiB 2-based cermets: modeling and experimental results. Applied Physics A, 90(1), 159-163, 2008
    18. Anoop, K. B., Kabelac, S., Sundararajan, T., and Das, S. K. Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. Journal of applied physics, 106(3), 034909, 2009
    19. Mewis, J. and Wagner, N.J., Colloidal Suspension Rheology. Cambridge University Press, 2012
    20. Rheology Theory and Applications. TA Instruments. 2019
    21. An, Z. Q., Zhang, Y. L., Li, Q., Wang, H. R., Guo, Z. C., and Zhu, J. Effect of particle shape on the apparent viscosity of liquid–solid suspensions. Powder Technology. 328, 199-206, 2018.
    22. Zheng, M. T., Dong, H. W., Xiao, Y., Liu, S. T., Hu, H., Liang, Y. R., Sun, L. Y., and Liu, Y. L. Facile one-step and high-yield synthesis of few layered and hierarchically porous boron nitride nanosheets. Rsc Advances. 6, 45402-45409, 2016.
    23. Ancey, C., and Jorrot, H. Yield stress for particle suspensions within a clay dispersion, Journal of Rheology, 45, 297-319, 2001
    24. Ancey, C. Role of lubricated contacts in concentrated polydisperse suspensions, Journal of Rheology, 45, 1421-1439, 2001
    25. Lewis, J. A. Colloidal Processing of Ceramics. Journal of the American Ceramic Society, 83(10), 2341–59, 2000
    26. Bae, J. W., Kim, W., Cho, S. H., and Lee, S. H. The Properties of AIN-Filled Epoxy Molding Compounds by the Effects of Filler Size Distribution. Journal of Materials Science, 35(23), 5907-5913, 2000
    27. Gebrehiwot, S. Manufacturing and Rheological Analysis of Spiral Flow Test Piece. Degree Thesis Plastics Technology, 2014
    28. Linec, M., and Music, B. The Effects of Silica-Based Fillers on the Properties of Epoxy Molding Compounds, Materials, 12(11), 11, 2019
    29. Venkatesulu, B. Y. T. M. J., and Thomas, M. J. Erosion resistance of alumina-filled silicone rubber nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 17(2), 615-624, 2010
    30. Nazir, M. T., Phung, B. T., Yu, S., & Li, S. Effects of thermal properties on tracking and erosion resistance of micro-ATH/AlN/BN filled silicone rubber composites. IEEE Transactions on Dielectrics and Electrical Insulation, 25(6), 2076-2085, 2018
    31. Rheology Theory and Applications. TA Instruments. 2016
    32. 王唯侖,氮化鋁/環氧成型模料之流變性及熱傳導性質探討;國立成功大學碩士論文, 2020
    33. 德商阿博格國際液態矽膠技術研討會,2019
    34. Functional Silicone Reactivity Guide, Gelest
    35. van Der Weij, F. W. The action of tin compounds in condensation‐type RTV silicone rubbers. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 181(12), 2541-2548, 1980
    36. 吳俊雄,最新橡膠技術。臺北市,高立圖書有限公司,1984
    37. 葉明國,橡膠化學與技術。臺北市,茂文圖書有限公司,1983
    38. 謝宗霖,燃燒合成六方晶氮化硼製程開發及氮化鋁/高分子複合材料之流變性探討,2019
    39. 廖平喜,高分子流變學。新竹市,楊國藩,1982
    40. Bröckel, U., Meier, W., & Wagner, G. (Eds.). Product design and engineering: formulation of gels and pastes. John Wiley & Sons, 2013

    無法下載圖示 校內:2025-07-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE