簡易檢索 / 詳目顯示

研究生: 鍾明村
Chung, Ming-Tsun
論文名稱: 以調整能量密度及工作距離做 準分子雷射微細加工
Excimer Laser Micromachining by Adjusting Fluence and Working Distance
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 85
中文關鍵詞: 微溝槽微加工工作距離能量密度準分子雷射
外文關鍵詞: fluence, working distance, micromachining, microgroove, excimer laser
相關次數: 點閱:120下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文研究選用合適的KrF準分子雷射之能量密度及工作距離(從燒蝕表面到投光鏡頭的距離),來產生截面寬度漸變的微溝槽。加工參數的選擇根據可預測燒蝕截面的電腦程式。此程式結合Fourier 光學所預測的局部光通量分佈及量測所得到的PI材料之燒蝕率曲線求取燒蝕後的截面位置。我們也由不同的能量密度與工作距離造成的燒蝕結果,歸納出引導參數選用的關係,如:燒蝕結構側壁角度隨能量密度的降低而增加,且雷射光束寬度隨工作距離的增加而增加,但局部光通量會隨工作距離的增加而降低。為說明本方法的應用,本文以V形溝槽、U形溝槽、尖筆形溝槽及光纖接合器為例子,顯示其預測及製作的截面形狀。

     In this work a method selecting suitable fluences and working distances (defined as the distance from the ablated surface to the projection lens) to generate microgrooves with varying width by a KrF excimer lasers is developed. The selection of the machining parameters is based on a computer program predicting the profile of the ablated surface. The program combines the prediction of the local distribution of light flux by the Fourier optics and the curve of ablation rate of polyimide obtained by measurement to calculate the location of the ablated surface. We also induce some guides of the parameter selection from ablation results for various fluences and working distances. These include the correlations that the side wall angle of the ablated structure increases with the decrease of the fluence, the increase of the working distance increases the width of the laser beam, but decreased the local light flux. The predicted and fabricated profiles of the V-groove, the U-groove, the style-groove and the fiber-chip coupling are presented to demonstrate the application of the present method.

    中文摘要...................................................................................................i 英文摘要..................................................................................................ii 誌謝........................................................................................................iii 目錄.........................................................................................................iv 表目錄....................................................................................................vi 圖目錄...................................................................................................vii 符號說明.................................................................................................x 第一章 緒論 ...........................................................................................1 1-1 研究背景、文獻回顧與研究目的 ...................................................1 1-2 本文架構 ......................................................................................... 4 第二章 加工過程 .................................................................................. 6 2-1 加工過程總論 ................................................................................. 6 2-2 準分子雷射加工機台及加工材料簡介 ...........................................6 2-3 能量密度及燒蝕率曲線的量測 ...................................................... 7 2-4 影像擷取 ......................................................................................... 8 2-4-1 截面影像擷取—真空鑲埋法 ......................................................... 8 2-4-2 表面影像擷取—SEM(Scanning Electron Microscope掃瞄式電子 顯微鏡)拍攝 ............................................................................................ 9 2-5 理論預測模式與數值方法 ............................................................... 9 2-5-1 以複振幅描述經過光學系統的成像 ........................................... 10 2-5-2 成像面後的光分佈與雷射對材料的燒蝕 .................................... 11 2-6 加工參數與燒蝕截面關係 .............................................................. 13 2-7 加工過程舉例:截面側壁為拋物線形之溝槽的微加工 .............17 2-8 本加工方法適用的加工範圍 ..........................................................20 第三章 結果與討論 ............................................................................. 47 3-1 加工U型溝槽 ................................................................................. 47 3-2 加工尖筆形溝槽 ............................................................................ 48 3-3 製作光纖接合器 ............................................................................ 49 3-4 製作微噴嘴陣列 ............................................................................ 49 第四章 結論與展望 .............................................................................. 67 參考文獻 ............................................................................................... 69

    1. S. Lazare, J. Lopez, F. Weisbuch, 1999,“High-Aspect-Ratio Microdrilling in Polymeric Materials with Intense KrF Laser Radiation,” Applied Physics A, 69, pp. S1-S6.

    2.A. S. Holmes, 2002, “Laser Processes for MEMS Manufacture,” Focused on 2nd International Symposium on Laser Precision Microfabrication, pp. 63-69.

    3.R. A. Lawes, A. S. Holmes, and F. N. Goodall, 1996, “The Formation of Moulds for 3D Microstructures Using Excimer Laser Ablation,” Microsystem Technologies, 3, pp. 17-19.

    4.B. Müller, T. Boeck, C. Hartmann, 2004, “Effect of Excimer Laser Beam Delivery and Beam Shaping on Corneal Sphericity in Photorefractive Keratectomy,” Journal of Cataract and Refractive Surgery, 30, pp. 464-470.

    5.D. Scheinert, G. Biamino, 2001, “Femoropopliteal Occlusions:Experience with Peripheral Excimer Laser Angioplasty,” Current Interventional Cardiology Report, 3, pp. 130-138.

    6.C. J. Hayden, 2003, “Three-Dimensional Excimer Laser Micromachining Using Greyscale Masks,” Journal of Micromechanics and Microengineering, 13, pp. 599-603.

    7.J. Ihlemann, K. Rubahn, 2000, “Excimer Laser Micro Machining: Fabrication and Applications of Dielectric Masks,” Applied Surface Science, 154-155, pp. 587-592.

    8.Y.-C. Lee, C.-M. Chen, C.-Y. Wu, 2005, “A New Excimer Laser Micromachining Method for Axially Symmetric 3D Microstructures with
    Continuous Surface Profiles,” Sensors and Actuators A, 117, pp. 349-355.

    9.K. Nacessens, H. Ottevaere, P. Van Daele, and R. Bates, 2003, “Flexible Fabrication of Microlenses in Polymer Layers with Excimer Laser Ablation,” Applied Surface Science, 208-209, pp. 159-164.

    10.A. A. Tseng, Y.-T. Chen, K.-J. Ma, 2004, ”Fabrication of High-Aspect-Ratio Microstructures Using Excimer Laser,” Optics and Lasers in Engineering, 41, pp. 827-847.

    11.C.-Y. Wu, C.-W. Shu and Z.-C. Yeh, 2005 (accepted), “Effects of Excimer Laser Illumination on Microdrilling Into an Oblique Polymer Surface,” Optics and Lasers in Engineering.

    12.L. M. Galantucci, 1998, “Excimer Laser Cutting:Experimental Characterization and 3D Numerical Modelling for Polyester Resins,” Annals of the CIRP, 47, pp. 141-144.

    13.K. H. Choi, J. Meijer, T. Masuzawa, D.-H. Kim, 2004, “Excimer Laser Micromachining for 3D Microstructure,” Journal of Materials Processing Technology, 149, pp. 561-566.

    14.S.-Y. Wang, 2005, “A Computer Simulation for Mask-Shape Effect in The Fabrication of An Aspheric Micro Lens Array by Using A Dragging Process with Excimer Laser,” Journal of Micromechanics and Microengineering, 15, pp. 1310-1316.

    15.C. Paterson, A. S. Holmes, and R. W. Smith, 1999, “Excimer Laser Ablation of Microstructures:A Numerical Model,” Journal of Applied Physics, 86, pp. 6538-6546.

    16.陳偉祥, 2003, "局部光分佈對準分子雷射微細加工的影響," 國立成功大學機械工程學系碩士論文, 台南, 台灣.

    17.J. W. Goodman, 1996, Introduction to Fourier Optics, 2nd ed., McGraw-Hill, San Francisco.

    18.W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992, Numerical Recipes in Fortran, 2nd Ed., Combridge University Press, New York.

    19.R. J. Burden and J. D. Faires, 2001, Numerical Analysis, 7th ed., Brooks/Cole, California.

    20.K. Naessens, S. Boons, An Van Hove, T. Coosemans, S. Verstuyft, H. Ottevaere, L. Vanwassenhove, P. Van Daele, R. Baets, 1999, “Excimer Laser Ablated U-groove Alignment Structure for Optical Fibre Arrays,” Proceedings Symposium IEEE, pp. 187-190.

    21.C. Rowan, 1995, “Excimer Lasers Drill Precise Holes with Higher Yields,” Laser Focus World, 31, pp. 81-83.

    下載圖示 校內:2007-08-05公開
    校外:2007-08-05公開
    QR CODE