簡易檢索 / 詳目顯示

研究生: 張淑淨
Chang, Shu-Jing
論文名稱: 細胞黏附分子之三度空間分布調節鈣蛋白酶媒介之黏著斑複合體周轉
The 3D architecture of cell adhesion molecules regulates calpain-mediated turnover of focal adhesion complex
指導教授: 邱文泰
Chiu, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 54
中文關鍵詞: 鈣離子鈣蛋白酶黏著斑蛋白水解光遺傳學
外文關鍵詞: Ca2+, calpain, focal adhesion, proteolysis, optogenetics
相關次數: 點閱:152下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 黏著斑是一種靠近細胞膜(15 nm以內)之大型且動態變化的蛋白質複合體。黏著斑可以當作細胞骨架與細胞外間質之物理性連結;同時也可以是細胞生化訊息的樞紐,因為此處聚集並同時指揮與活化許多細胞訊息蛋白質分子於細胞膜上integrin接受器與細胞外間質結合與作用之處。在細胞移行過程中,黏著斑的相互協調與動態調控是相當重要的,包含其新生與瓦解。黏著斑的瓦解或周轉是由鈣離子觸發鈣蛋白酶進行相關蛋白質分子水解導致而成,主要是發生在移行細胞的尾端。鈣蛋白酶藉由水解多種與組成黏著斑相關的蛋白來調控黏著斑的周轉,例如FAK, Paxillin, Talin與Vinculin。黏著斑的構造是由許多不同之黏著斑蛋白分子於特定的空間位置和功能位區組成多層此的立體建構,這些蛋白質分子彼此互相影響與依存,藉以調控黏著斑的形態與功能。許多先前的研究已經證實黏著斑的周轉可以受到鈣離子訊號的調控,但是大部分的研究並無顯示出在活細胞中黏著斑周轉過程之空間與時間的即時變化細節。本研究之目標在於探討活細胞鈣離子訊息所引發黏著斑周轉過程。利用全反射螢光顯微鏡之技術,結果顯示鈣離子可以造成不同黏著斑分子具有不同降解過程,而同時也使用三個具有抵抗鈣蛋白酶降解能力的黏著斑突變蛋白分子來釐清分子之間相互作用與依存的關係。結果顯示Vinculin不容易受到降解外,也不容易受到具有抵抗鈣蛋白酶降解能力的黏著斑突變蛋白分子影響其降解過程。利用3D螢光造影來確認黏著斑複合體之結構與瓦解過程之關係,結果顯示黏著斑複合分子之結構與其瓦解過程有關。傳統上用來研究黏著斑動態變化的方法包括藥理上的刺激或是遺傳上的操作;然而,這些方法在空間上和時間上的精準度並不精確。光遺傳學是一種結合遺傳學與光學去即時與精密的調控一些組織特定細胞內之明確的事件。光敏感通道ChR2已經被發展運用於光遺傳學刺激方法上用來精準的調控某些特定細胞的反應,其是一種可以直接被光切換之具有陽離子選擇性的離子通道,最大吸收光譜為480 nm附近之藍光。因此,當此光敏感通道打開時,會對帶正一價與正二價之陽離子產生一較大的通透度,可以通導包括氫離子、鈉離子、鉀離子與鈣離子等陽離子。由結果顯示光敏感通道ChR2可造成整體或局部的鈣離子進入細胞內。綜合實驗結果,證明黏著斑複合體的結構在鈣離子訊號誘發個別的黏著斑蛋白分子之周轉與動態變化扮演重要的角色。此外,利用光遺傳學技術可以細部地探討鈣離子訊號是如何誘發黏著斑之周轉。

    Focal adhesions are large, dynamic protein complexes which are close to the plasma membrane (within 15 nm). Focal adhesions serve as the mechanical linkages between the cytoskeleton, and the extracellular matrix, and as a biochemical signaling hub to concentrate and direct numerous signaling proteins at the sites of integrin binding and clustering. The coordinated and dynamic regulation of focal adhesion is required for cell migration, including assembly and degradation. Degradation, or turnover of focal adhesion, is the major event in the rear end of a migratory cell, which is in a Ca2+/calpain-dependent proteolysis. In addition, calpain has been shown to regulate the turnover of focal adhesion by proteolysis of multiple focal adhesion related proteins, such as FAK, Paxillin, Vinculin, and Talin. The organization of focal adhesion proteins indicates a composite of several laminar architectures with spatial and functional compartments that mediate the interdependent functions of focal adhesion. The effects of Ca2+ signal on focal adhesion turnover have been shown, but most of them have not shown the detailed space-time cascades of focal adhesion turnover in real time. The aim of this study is to investigate how a Ca2+ signal induces cascades of focal adhesion turnover in living cell. The results of TIRFM images showed Ca2+ induces different processes of each focal adhesion molecule. In addition, three calpain-resistant mutant focal adhesion molecules were used to clarify the interactions between focal adhesion molecules. The results showed Vinculin is difficult to be degraded and not be significantly affected by calpain-resistant mutanted focal adhesion molecules. The 3D fluorescence imaging was performed to confirm the relationship between architecture and degradation of focal adhesion. The results showed architecture of focal adhesion is related to the trend of degradation of focal adhesion molecules. Traditional approaches in the study of focal adhesion dynamics have been via pharmacological stimulation or genetic manipulation. However, these methods have poor temporal and spatial precision. An optogenetics is the combination of genetics and optics to control well-defined events within specific cells of living tissue in real time. Optogenetic stimulation approach that uses channelrhodopsin-2 (ChR2) has been developed for providing more precise and targeted stimulation effect on cells. ChR2 is a directly light-switched cation-selective ion channel, which absorbs blue light with an absorption maximum of 480 nm. Then, this channel opens rapidly to generate a large degree of permeability for monovalent and divalent cations, conducting H+, Na+, K+, and Ca2+ ions. The results showed that ChR2 can be used to cause global and local Ca2+ influxes. Taken together, this study suggests that the 3D architecture of focal adhesion plays an important role in Ca2+-mediated focal adhesion turnover. Therefore, optogenetic stimulation of ChR2 can be used to operate detailed focal adhesion turnover.

    Abstract...........................1 中文摘要............................3 Acknowledgement....................5 Contents...........................6 Figure contents....................7 Introduction.......................8 Cell migration and Ca2+ signal....8 Calpain...........................10 Focal adhesions...................10 Optogenetics......................14 Materials and methods..............17 Results............................22 Discussions........................27 References.........................29 Figures............................34

    1.Brundage RA, Fogarty KE, Tuft RA, Fay FS. (1991) Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254: 703-706.

    2.Carragher NO, Westhoff MA, Riley D, Potter DA, Dutt P, Elce JS, Greer PA, Frame MC. (2002) v-Src induced modulation of the calpain–calpastatin proteolytic system regulates transformation. Molecular and Cellular Biology 22: 257-269.

    3.Blaser H, Reichman-Fried M, Castanon I, Dumstrei K, Marlow FL, Kawakami K, Solnica-Krezel L, Heisenberg CP, Raz E. (2006) Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Developmental Cell 11: 613-627.

    4.Clark K, Langeslag M, Figdor CG, van Leeuwen FN. (2007) Myosin II and mechanotransduction: a balancing act. Trends in Cell Biology 17: 178-186.

    5.Chan KT, Bennin DA, Huttenlocher A. (2010) Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). The Journal of Biological Chemistry 285: 11418-11426.

    6.Cortesio CL, Boateng LR, Piazza TM, Bennin DA, Huttenlocher A. (2011) Calpain-mediated proteolysis of paxillin negatively regulates focal adhesion dynamics and cell migration. The Journal of Biological Chemistry 286: 9998-10006.

    7.Carter ME, de Lecea L. (2011) Optogenetic investigation of neural circuits in vivo. Trends in Molecular Medicine 17: 197-206.

    8.Frame MC, Fincham VJ, Carragher NO, Wyke JA. (2002) v-Src's hold over actin and cell adhesions. Nature reviews. Molecular Cell Biology 3: 233-245.

    9.Franco SJ, Rodgers MA, Perrin BJ, Han J, Bennin DA, Critchley DR, Huttenlocher A. (2004) Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature Cell Biology 6: 977-983.

    10.Franco SJ, Huttenlocher A. (2005) Regulating cell migration: calpains make the cut. Journal of Cell Science 118: 3829-3838.

    11.Franz CM, Müller DJ. (2005) Analyzing focal adhesion structure by atomic force microscopy. Journal of Cell Science 118: 5315-23.

    12.Fenno L, Yizhar O, Deisseroth K. (2011) The development and application of optogenetics. Annual Review of Neuroscience 34:389-412.

    13.Gumbiner BM. (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84: 345-357.

    14.Glading A, Lauffenburger DA, Wells A. (2002) Cutting to the chase: calpain proteases in cell motility. Trends in Cell Biology 12: 46-54.
    Goll DE, Thompson VF, Li H, Wei W, Cong J. (2003) The calpain system. Physiological Reviews 83: 731-801

    15.Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM. (2010) Mechanical integration of actin and adhesion dynamics in cell migration. Cell & Developmental Biology 26: 315-333.

    16.Huttenlocher A, Palecek SP, Lu Q, Zhang W, Mellgren RL, Lauffenburger DA, Ginsberg MH, Horwitz AF. (1997) Regulation of cell migration by the calcium-dependent protease calpain. The Journal of Biological Chemistry 272: 32719-32722.

    17.Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM. (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468: 580-584.

    18.Liu C, Hermann TE. (1978) Characterization of ionomycin as a calcium ionophore. The Journal of Biological Chemistry 253: 5892-5894

    19.Liu X, Schnellmann RG. (2003) Calpain mediates progressive plasma membrane permeability and proteolysis of cytoskeleton-associated paxillin, talin, and vinculin during renal cell death. The Journal of Pharmacology and Experimental Therapeutics 304: 63-70.

    20.Marzia M, Chiusaroli R, Neff L, Kim NY, Chishti AH, Baron R, Horne WC. (2006) Calpain is required for normal osteoclast function and is down-regulated by calcitonin.The Journal of Biological Chemistry 281: 9745-9754.

    21.Meyre D, Froguel P, Horber FF, Kral JG. (2012) Talin contains a C-terminal calpain2 cleavage site important in focal adhesion dynamics. PLoS one 7: e34461.

    22.Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P. (2002) Channelrhodopsin-1: a light-gated protein channel in green alage. Science 296: 2395-2398.

    23.Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America 100: 13940-13945.

    24.Prevarskaya N, Skryma R, Shuba Y. (2011) Calcium in tumour metastasis: new roles for known actors. Nature Reviews. Cancer 11: 609-618.

    25.Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. (2003) Cell migration: integrating signals from front to back. Science 302: 1704-1709.

    26.Serrano K, Devine DV. (2004) Vinculin is proteolyzed by calpain during platelet aggregation: 95 kDa cleavage fragment associates with the platelet cytoskeleton. Cell Motility and the Cytoskeleton 58: 242-252.

    27.Sorimachi H, Ono Y. (2012) Regulation and physiological roles of the calpain system in muscular disorders. Cardiovascular Research 96: 11-22.

    28.Schneider F, Gradmann D, Hegemann P. (2013) Ion selectivity and competition in channelrhodopsins. Biophysical Journal 105: 91-100.

    29.Tsai FC, Meyer T. (2012) Ca2+ pulses control local cycles of lamellipodia retraction and adhesion along the front of migrating cells. Current Biology 22: 837-842.

    30.Wang YL. (2007) Flux at focal adhesions: slippage clutch, mechanical gauge, or signal depot. Science STKE 2007: pe10.

    31.Wehrle-Haller B. (2012) Assembly and disassembly of cell matrix adhesions. Current Opinion in Cell Biology 24: 569-581.

    32.Zamir E, Geiger B. (2001) Components of cell-matrix adhesions. Journal of Cell Science 114: 3577-3579.

    下載圖示 校內:2017-06-30公開
    校外:2017-06-30公開
    QR CODE