| 研究生: |
賴文基 Lai, Wen-Chi |
|---|---|
| 論文名稱: |
地震引致地下水位變化機制之研究 The study of the mechanisms of earthquake-induced groundwater variation |
| 指導教授: |
徐國錦
Hsu, Kuo-Chin |
| 共同指導教授: |
謝正倫
Shieh, Chjeng-Lun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 296 |
| 中文關鍵詞: | 地震 、地下水 、前兆 、觀測 |
| 外文關鍵詞: | earthquake, groundwater, precursor, monitoring |
| 相關次數: | 點閱:118 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地震引致地下水位變化的現象,在過去三十年間持續的引起水文學及地震學研究者的討論。在過去研究中常被提出的解釋之一,認為地震引致的地下水位變化符合孔彈性力學,代表孔隙水壓的地下水位變化與含水層所產生的體積應變間呈現比例關係。然而,基於孔彈性力學理論所建立的此一機制解釋,受限於均質性地層假設之簡化模型。此理論儘管可以大致說明同震地下水位的升降變化型式與地殼應變壓縮與伸張區的空間分佈關係,但對於地下水位變化幅度的估算,卻一直無法得到合理的結果。此外,此一孔彈性力學均質性的假設,也無法解釋觀測站井對於不同地區地震所產生的地下水位變化幅度,明顯存在的反應敏感度差異。
本研究分析地震引致地下水位變化之靜態及動態效應,使用臺灣地區地震地下水觀測站井2004~2009年七年間的觀測成果,計算地震引致的地下水位變化中普遍存在的因斷層錯位造成的靜態體積應變(近震為主)及因地震波動傳遞造成的動態體積應變(遠震為主)。並以1999年集集地震、2008年汶川地震及2010年甲仙地震等三個不同型態的地震案例,驗證與討論地震引致的地下水位變化中同時存在的靜態與動態效應,且證明此一機制普遍存在與重複出現。此一發現,除了釐清過去透過單一案例不同站井或單一站井不同案例的資料解釋,由斷層錯位造成的靜態體積應變機制,或者由地震波動傳遞造成的動態體積應變機制無法統一說明各地、各案例地震引致地下水位變化的型態、幅度及空間分布的物理機制,也聯結了不同研究中討論的近震及遠震的不同反應型態。
除了定性的說明地震引致地下水位變化的靜態及動態的複合效應外,透過地震物理與地下水文的定量比對,本研究利用臺灣地區地震地下水觀測站井2004~2009年七年間的觀測成果,針對10座觀測成效較佳、觀測案例較多的地震地下水站井,濾除非構造因素的地下水位變動,利用地下水位中的地潮反應,求取反應各站井觀測含水層-水井系統的體積應變敏感度。再針對觀測期間計27場規模大於6的地震,分別計算各站井因斷層錯位造成的靜態體積應變及各站井的地表加速度觀測值,作為地震引致地下水位變化的靜態及動態效應定量分析的依據,分別獲得:(1) 地震引致地下水位變化的靜態體積應變量及地表加速度的最低門檻值;(2)地震引致地下水位不同變化型態的靜態體積應變量及地表加速度關係;(3) 地震引致地下水位變化空間分布的物理機制及(4)地震前兆性地下水位變化的可能機制等重要結論。
The earthquake-induced groundwater level changes were recorded in many historical records. Such changes have been monitored and investigated in the last thirty years. However, most of the previous studies, which are based on single event in different observations or multiple-independent events by many different data sources, involved uncertainties arising from different mechanisms and site effects. The quantitative analysis of earthquake-induced groundwater level changes remains a challenge.
Most of the evaluations of the coseismic static volumetric strain changes are based on the assumption of homogeneous and elastic material which is expanded in a half-infinite space. However, many of the coseismic and/or postseismic groundwater level changes caused by relatively distant earthquakes, show that the static volumetric strain changes can not well explain the earthquake-related changes. In this study, the data of 16 high resolution groundwater monitoring wells for 2004-2009 were utilized. The strain sensitivities of the groundwater level at these six wells ranged between 0.1 and 0.5 mm/10-9, indicating that an analysis of groundwater level data at these wells can detect volumetric strain changes on the order of 10-9. A total of 196 events had been examined to explore the mechanism of the earthquake-induced groundwater variation. Earthquake-related groundwater level changes were compared to observed seismic accelerations and to infer coseismic static volumetric strain changes at the wells. The strain to cause the groundwater variation composes two parts: static strain and dynamic strain. The static volumetric strain is caused due to the presence of inhomogeneous structures of tectonic structures and well-aquifer system, which the dynamic strain is mainly caused by ground shaking.
On the whole, ground shaking seems a dominant factor for the earthquake-related changes at the most of wells because the calculated static volumetric strain is far less than the observed strain that corresponds to the earthquake-induced groundwater variation. The analysis shows that the acceleration of ground shaking cannot always fits to the observed groundwater level changes.
1. Beaumont, C. and J. Berger, An analysis of tidal strain observations from the United States of America: I. The laterally homogeneous tide. Bull. Seismol. Soc. Am., 65, 1613-1629, 1975 .
2. Beavan, J., K. Evans, S. Mousa, and D. Simpson, Estimating aquifer parameters from analysis of forced fluctuations in well level: A example from the Nubian formation near Aswan, Egypt 2. Poroelastic properties. J. Geophy. Res., 96 (B7), 12139-12160, 1991.
3. Berger, J., Evan and C. Beaumont, An analysis of tidal strain observations from the United States of America: II. The inhomogeneous tide. Bull. Seismol. Soc. Am., 66, 1661-1676, 1976.
4. Biot, M. A., General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155-164, 1941.
5. Biot, M. A., Mechanics of deformation and acoustic propagation in porous media. J. Applied Physics, 33, 1483-1498, 1960.
6. Biot, M. A., Nonlinear and semilinear rheology of porous solids. J. Geophy. Res., 78 (23), 4924-4937, 1973.
7. Blanchard, F. B., and P. Byerly, A study of a well gauge as a seismograph, Bull. Seismol. Soc. Am., 25, 313-321, 1935.
8. Bodvarrsson, G., Confined fluids as strain meters, J. Geophy. Res., 75, 2711-2718, 1970.
9. Bower, D. R., and K. C. Heaton, Response of an aquifer near Ottawa to tidal forcing and the Alaskan earthquake. Can. J. Earth Sci., 15, 331-340, 1978.
10. Brace, W. F., B. W. Paulding Jr., and C. Scholz, Dilatancy in the fracture of crystalline rocks. J. Geophy. Res., 71 (16), 3939–3953, 1966.
11. Bredehoeft, J. D., Response of well-aquifer systems to earth tides. J. Geophy. Res., 72, 3075-3087, 1967.
12. Bredehoeft, J. D., H. H. Cooper Jr., I. S. Papadopulos, and R. R. Bennett, Seismic fluctuations in an open artesian water well, Geological Survey Research. U.S. Geol. Surv. Prof. Pap. 525-C, 51-57, 1965.
13. Bredehoeft, J. D., Well-aquifer systems and earth tides. J. Geophy. Res., 72, 3075-3087, 1967.
14. Byerlee, J., Model for episodic flow of high-pressure water in fault zone before earthquake. Geology, 21, 303-306, 1993.
15. Carrigan, C. R.,G. C. P. King, G. E. Barr and N. E. Bixler, Potential for water-table excursions induced by seismic events at Yucca Mountain, Nevada. Geology, 19 (12) , 1157-1160, 1991.
16. Chia, Y. P., Y. S. Wang, J. J. Chiu, and C. W. Liu, Changes of groundwater level due to the 1999 Chi-Chi Earthquake in the Choshui River alluvial fan in Taiwan. Bull. Seismol. Soc. Am., 91, 1062-1068, 2001.
17. Coble, R. W., The effects of the Alaskan earthquake of March 27, 1964, on ground water in Iowa. Iowa Acad. Sci. Proc., 72, 323-332, 1967.
18. Cooper, H. H., Jr., J. D. Bredehoeft, I. S. Papdopulos, andR. R. Bennett, The resporise of well-aquifer systems to seismic waves. J. Geophy. Res., 70, 3915-3926, 1965.
19. Cressie, N., Statistics for spatial data, Wiley, New York, 1993.
20. Davis, g. H., G. F. Worts Jr., and H. D. Wilson Jr., Water-level fluctuations in wells. In “Earthquakes in Kern County, 1952.” Calif. Dept. Nat. Res., Div. Mines Bull. 171, pp. 99-106, 1995.
21. Davis, J. C., Statistics and Data Analysis in Geology, Third Edition, John Wiley & Sons, New York, 2002.
22. Dobrovolsky, I. P., S. I. Zubkov, and V. I. Miachkin, Estimation of the size of earthquake preparation zones, Pure Appl. Geophys., 117, 1025-1044, 1979.
23. Eaton, J. P., and K. J. Takasaki, Seismological interpretation of earthquake-induced water-level fluctauations in wells. Bull. Seismol. Soc. Am., 49, 227-245, 1959.
24. Weeks, Edwin P., Barometric fluctuations in wells tapping deep unconfined aquifers, Water Resou. Res., 15 (5) , 1167-1176, 1979.
25. Fleeger G. M., Daniel J. G., Theodore F. B., and Dennis W. R., Hydrologic effects of the Pymatuning Earthquake of September 25,1988, in Northwestern Pennsylvania. USGS WRIR 99-4170, 1999.
26. Gabert, G. M., Groundwater-level fluctuations in Alberta, Canada, caused by the Prince William Sound, Alsaska, Earthquake of March, 1964. Can. J. Earth Sci., 2, 131-139, 1965.
27. Ge, S. and C. Stover, Hydrodynamic response to strike-slip and dip-slip faulting in a half space. J. Geophy. Res., 105, 25513−25524, 2000.
28. Gossage, B., 1998. The application of indicator kriging in the modelling of geological data. Proceedings of a one day symposium: Beyond Ordinary Kriging, Geostatistical Association of Australasia, Perth Western Australia, 1998.
29. Grecksch, G., F. Roth, and H. J. Kümpel, Coseismic well-level changes due to the 1992 Roermond earthquake compared to static deformation of half-space solutions. Geophysical Journal International, 138, 470-478, 1999.
30. Hartmann, T. and H.-G. Wenzel (1995a): The HW95 tidal potential catalogue. Geophys. Res. Lett.s, vol. 22, no. 24, 3553-3556, 1995.
31. Hartmann, T. and H.-G. Wenzel (1995b): Catalogue HW95 of the tide generating potential. Bulletin d'Informations Mareés Terrestres, vol. 123, 9278-9301, Bruxelles 1995.
32. Henstridge, J., Non-linear modelling of geological continuity. Proceedings of a one day symposium: Beyond Ordinary Kriging, Geostatistical Association of Australasia, Perth Western Australia, 1998.
33. Holzer, T. L., T. L. Youd and T. C. Hank, Dynamics of liquefaction during the 1987 Superstition Hills, California, Earthquake. Science, 244, 56-59, 1989.
34. Hsieh, P. A., and J. D. Bredehoeft, Some important aspects of a reservoir analysis of the Denver earthquakes: A case of induced seismicity. J. Geophy. Res., 86, 903–920, 1981.
35. Hsu, K.-C. and C.-C. Tung, On estimating the earthquake-induced changes in hydrogeological properties of the Choshuishi Alluvial Fan, Taiwan. Hydrogeo. J., 2004.
36. Huixin, S. and C. Zuhuang, Geochemical Characteristics of Underground Fluid in Some Active Fault Zones in China. J. Geophy. Res., 91 12282-12290, 1986.
37. Igaraghi, G. and H. Wakita, Groundwater Radon anomalies associated with earthquakes. Tectonophysics, 180, 237-254, 1992.
38. Igarashi, G., and H. Wakita, Tidal responses and earthquake- related changes in the water level of deep wells. J. Geophy. Res., 96, 4269-4278, 1991.
39. Igarashi, G., Ground-water radon anomaly before the Kobe earthquake in Japan, Science, 269, 60-61, 1995.
40. Igarashi, G., H. Wakita, and K. Umeda, Precursory and coseismic changes in well water levels observed for some large earthquakes in Japan. Eos Trans, AGU., 77(46), Fall Mect. Suppl., F457, 1996.
41. Igarashi, G. and H. Wakita, Tidal responses and earthquake-related changes in the water level of deep wells. J. Geophy. Res., 96 (B3), 4269-4278, 1991.
42. Ishiguro, M., H. Akaike, K. Ooe and S .Nakai, A Bayesian approach to the analysis of earth tides. Proceeding of the Ninth International Symposium on Earth Tides, pp. 283-292, 1983.
43. Ishihara, K., K. Shimizu, and Y. Yamada, Pore water pressures measured in sand deposits during an earthquake. Soils Found., 21, 85-100, 1981.
44. Jacob, C. E., On the flow of water in an elastic artesian aquifer. Eos Trans. AGU., 21(2), 574-586, 1940.
45. Journel, A.G., and C. J. Huijbregts, Mining geostatistics. Academic Press, London, 1978.
46. Kawabe, I., I. Ohno, and S. Nadano, Groundwater flow records indicating earthquake occurrence and induced Earth’s free oscillation. Geophys. Res. Lett., 15, 1235-1238, 1988.
47. King, C. Y., D. Basler, T. S. Presser, W. C. Evans, and L. D. White, In search of earthquake-related hydrologic and chemical changes along Hayward Fault. Appl. Geochem., 9,83-91, 1994.
48. King, C. Y., S. Azuma, G. Igarashi, M. Ohno, H. Saito, and H. Wakita, Earthquake-related water-level changes at 16 closely clustered wells in Tono, Central Japan. J. Geophy. Res. , 104, 13073-13081, 1999.
49. Kitagawa, G., and N. Matsumoto, Detection of coseismic changes of underground water level. J. Am. Stat. Assoc., 91(434), 521-528, 1996.
50. Kitagawa, Y., and N. Koizumi, Comparison of postseismic and groundwater temperature changes with earthquake-induced volumetric strain release: Yudni hot spring, Japan. Geophys. Res. Lett., 23, 3147-3150, 1996.
51. Koide, K., M. Yamane, and K. Kobayashi, Heterogeneity of hydraulic conductivity of a fault in sedimentary sequences at the Tono Mine, central Japan. Power Reactor and Nucl. Fuel Dev. Corp., Tono Geosci. Cent., Toki-shi, Gifu-ken, Japan. Rep. PNC TN 7410, 97-035, 30-39. 1997.
52. Koizumi, N., Y. Kano, Y. Kitagawa, T. Sato, M. Takahashi, S. Nishimura, and R. Nishida, Groundwater anomalies associated with the 1995 Hyogo-ken Nanbu Earthquake. J. Phys. Earth, 44, 373-380, 1996.
53. Koizumi, N., T. Eikichi, K. Osamu, N. Matsumoto, M. Takahashi and T. Sato, Preseismic changes in groundwater level and volumetric strain associated with earthquake swarms off the east coast of the Izu Peninsula, Japan. Geophys. Res. Lett.s, 26 (23), 3509-3512, 1999.
54. Koizumi, N., W. C. Lai, Y. Kitagawa and N. Matsumoto., Comment on ”Coseismic hydrological changes associated with dislocation of the September 21, 1999 Chichi earthquake, Taiwan”. Geophys. Res. Lett.s, Vol. 31, pp. L13603-13604, 2004.
55. Kümpel, H. J., Poroelasticity: parameters reviewed. Geophys. J. Int., 105, 783-799, 1991.
56. Kümpel, H. J., About the potential of wells to reflect stress variations within inhomogeneous crust. Tectonophysics, 211, 317-336, 1992.
57. Kunugi, T., Y. Fukao and M. Ohno, Underdamped Responses of a Well to Nearby Swarm Earthquakes off the Coast of Ito City, Central Japan, 1995. J. Geophy. Res., 105 (B4) , 7805-7818, 2000.
58. Lai, W.-C., N. Koizumi, N. Matsumoto, Y. Kitagawa, C.-W. Lin, C.-L. Shieh, and Y.-P. Lee, Effects of seismic ground motion and geological setting on the coseismic groundwater level changes caused by the 1999 Chi-Chi Earthquake, Taiwan. Earth Planet Space, 56, 873-880, 2004.
59. Lee, M., T. K. Liu; K. F. Ma, Y. M. Chang, Coseismic hydrological changes associated with dislocation of the September 21, 1999 Chichi earthquake, Taiwan. Geophys. Res. Lett.,November Vol.29, No.15, 2002.
60. T. Lege, O. Kolditz and W. Zielke, Strömungs-Transportmodellierung: Methodenhandbuch zur Erkundung des Untergrunds von Deponien and Altlasten Band 2. Springer-Verlag, Berlin, 418, 1996.
61. Lin, Y. B., Y. C. Tan, T. C. J. Yeh, C. W. Liu, and C. H. Chen, A visco-elastic model for groundwater level changes in ChouShui river alluvial fan after the ChiChi earthquake in Taiwan. Water Resou. Res., 2005.
62. Liu, L. B., E. Roeloffs and X. Y. Zheng, Seismically induced water level fluctuations in the Wali well. Beijing, China. J. Geophy. Res., 94, 9453-9462, 1989.
63. Lomnitz, C., Fundamentals of Earthquake Prediction. John Wiley & Sons, 326p New York, 1994.
64. Ma, K. F., J. Mori, S. J. Lee, and S. B. Yu, Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, Earthquake. Bull. Seismol. Soc. Am., 91 (5), 1069-1087, 2001.
65. Masterlark, T., C. DeMets, H. F. Wang, O. Sanchez, and J. Stock, Homogeneous vs heterogeneous subduction zone models: Coseismic and postseismic deformation. Geophys. Res. Lett.s, 28(21), 4047-4050, 2001.
66. Matsumoto, K., T. Sato, T. Takanezawa, and M. Ooe, GOTIC2: A Program for Computation of Oceanic Tidal Loading Effect. J. Geod. Soc. Jpn., 47, 243-248, 2001.
67. Matsumoto, N., Regression analysis for anomalous changes of ground water level due to earthquakes. Geophys. Res. Lett.s, 19(12), 1193-1196, 1992.
68. Matsumoto, N., and E. A. Roeloffs, Hydrologic response to earthquakes in the Haibara well, central Japan: II. Possible mechanism inferred from time-varying hydraulic properties. Geophys. J. Int., 155(3), 885-898, 2003.
69. Matsumoto, N., G. Kitagawa, and E. A. Roeloffs, Hydrologic response to earthquakes in the Haibara well, central Japan: I. Groundwater-level changes revealed using state space decomposition of atmospheric pressure, rainfall, and tidal responses. Geophys. J. Int., 155(3), 899-913, 2003.
70. Matsumoto, N., G. Kitagawa, Strain sensitivities and noise levels in groundwater levels at observation wells in and around the rupture zone of the future Tokai Earthquake. J. Geod. Soc. Jpn., 51 (3), 131-145, 2005.
71. Melchior, P., The Earth Tides, Pergan Press, Oxford, 1966.
72. Mindlin, R. D., Force at a point in the interior of a semi-infinite solid. Physics, 7, 195-202, 1936.
73. Montgomery, D. R., and M. Manga, Streamflow and water well responses to earthquakes. Science, 300(27), 2047-2049, 2003.
74. Muir-Wood, R., and G. C. P. King, Hydrological signatures of earthquake strain. J. Geophy. Res., 98, 22035-22068, 1993.
75. Nicholson, C., E. Roeloffs, and R. L. Wesson, The northeastern Ohio earthquake of 31 January 1986: Was it induced? Bull. Seismol. Soc. Am, 78, 188-217, 1988.
76. Nur, A., Dilatancy, pore fluids, and premonitory variations in ts/tp travel times. Bull. Seismol. Soc. Am, 62, 1217-1222, 1972.
77. Ohno, M., H. Wakita, and K. Kanjo, A water well sensitive to seismic wave. Geophys. Res. Lett.s, 24, 691-694, 1997.
78. Ohno, M., T. Sato, K. Notsy, H. Wakita, and K. Ozawa, Groundwater-level changes in response to bursts of seismic activity off the Izu Peninsula, Japan. Geophys. Res. Lett.s, 26 (16), 2501-2504, 1999.
79. Okada, Y., Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am, 82 (2), 1018-1040, 1992.
80. Palciauskas, V. V. and P. A. Domenico, Fluid pressures in deforming porous rocks. Water Resou. Res., 25, 203-213, 1989.
81. Parker, G. G. and V. T. Stringfield, Effects of earthquakes, tides, winds, and atmospheric pressure on water in the geologic formation of southern Florida., Economic Geology, 45, 441-460, 1950.
82. Press, F., Displacements, strains and tilts at tele-seismic distances. J. Geophy. Res., 70, 2395-2412, 1965.
83. Quilty, E., and E. Roeloffs, Water level changes in response to the December 20, 1994 M4.7 earthquake near Parkfield, California. Bull. Seisimol. Soc. Am., 87, 310-317, 1997.
84. Rice, J. R. and M. P. Cleary, Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys. Space Physics, 14 (2) , 227-241, 1976.
85. Roeloffs, E. A., Hydrologic precursors to earthquake: A review. Pure Appl. Ceophys., 126, 177-209, 1988.
86. Roeloffs, E. A., Poroelastic techniques in the study of earthquake-related hydrologic phenomena, in Advances in Geophysics, edited by R. Dmowska, Academic, San Diego, Calif, 137, 135-195, 1996.
87. Roeloffs, E. A., S. S. Burford, F. S. Riley, and A. W. Records, Hydrologic effects on water level changes associated with episodic fault creep near Parkfield, California. J. Geophy. Res., 94(B9), 12387-12402, 1989.
88. Roeloffs, E., and E. Quilty, Water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California, Earthquake. Pure Appl. Geophys., 149, 21-60, 1997.
89. Roeloffs, E. A., Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J. Geophy. Res., 103 (B1), 869-889, 1998.
90. Rojstaczer, S., The local effects of groundwater pumpage within a fault-influenced groundwater basin, Ash Meadows, Nye County, Nevada, U.S.A. J. Hydrol., 91, 319-337, 1987.
91. Rojstaczer, S., Determination of fluid flow properties from the response of water levels in wells to atmospheric loading. Water Resou. Res., 24(11), 1927-1938, 1988.
92. Rojstaczer, S., Intermediate period response of water levels in wells to crustal strain: sensitivity and noise Level. J. Geophy. Res., 93 (B11), 13619-13634, 1988b.
93. Rojstaczer, S. and D. C. Agnew, The influence of formation material properties on the response of water levels in wells to earth tides and atmospheric loading. J. Geophy. Res., 94 (B9), 12403-12411, 1989.
94. Rojstaczer, S., and S. Wolf, Permeability changes associated with large earthquakes: An example for precipitation-induced variations of seismic activity. Tectonophysics, 207, 183-197, 1992a.
95. Rojstaczer, S., and S. Wolf, Permeability changes associated with large earthquakes: An example from Loma Prieta, California. Geology, 20, 211-214, 1992b.
96. Rojstaczer, S., and S. Wolf, R. Michel, Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature, 373, 237-239, 1995.
97. Sato, T., H. Wakita, L. Notsu, and G. Igarashi, Anomalous hot spring water changes:Possible precursors of the 1989 volcanic eruption off east coast of Izu Peninsula in October 1996. Rep. Coord. Comm. Earthq. Pred., 57, 367-372, 1997.(in Japanese)
98. Sato, T., R. Sakai, K. Furuya and T. Kodama., Coseismic spring flow changes associated with the 1995 Kobe earthquake. Geophys. Res. Lett.s, 27, 8, 1219-1222, 2000.
99. Sato, T., N. Matsumoto, Y. Kitagawa, N. Koizumi, M. Takahashi, Y. Kuwahara, H. Ito, A. Cho, Takashi Satoh, K. Ozawa and S. Tasaka, Changes in groundwater level associated with the 2003 Tokachi-oki earthquake. Earth, Planets and Space, 56, 395-400, 2004.
100. Scholz, C.H., L.R. Sykes, and Y.P. Aggarwal, Earthquake prediction: A physical basis. Science 181, 4102, 803–810, 1973.
101. Scholz, C.H., The Mechanics of Earthquakes and Faulting, second edition, Cambridge Press, 2002.
102. Scott, J. S., and F. W. Render, Effect if an Alaskan earthquake on water levels in wells in Winnipeg and Ottawa. J. Hydrol. 2, 262-268, 1964.
103. Seno, T., The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate. Tectonophysic, 42, 209-206, 1977.
104. Shemin G. and S. C. Stover, Hydrodynamic response to strike- and dip-slip faulting in a half-space. J. Geophy. Res., 105(B11), 25513-25524, 2000.
105. Shibata, T., N. Matsumoto, and F. Akita, Fluctuation in groundwater level prior to the critical failure point of the crustal rocks. Geophys. Res. Lett., 30(1), 1024, 2003.
106. Shih, D. C. F., K. F. Chiou, C. D. Lee, I. S. Wang, Spectral responses of water level in tidal river and groundwater. Hydrological Processes, 13, 889–911. 1999.
107. Shimamura, H., M. Ino, H. Hikawa, and T. Iwasaki, Groundwater microtemperature in earthquake regions. Prue Appl. Geophys., 122, 933-946, 1985.
108. Shimizu, I., H. Osawa, T. Seo, S. Yasuike, S. Sasaki, Earthquake-related ground motion and groundwater pressure change at the Kamaishi Mine, Eng. Geol, 43, 107-118, 1996.
109. Skempton, A. W., The pore-pressure coefficients A and B. Geotechnique, 4, 143-147, 1954.
110. Steketee, J. A., On Volterra's dislocation in a semi-infinite elastic medium. Can. J. Phys., 36, 192-205, 1958.
111. Tamura, Y., T. Sato, M. Ooe and M. Ishiguro, A procedure for tidal analysis with a Bayesian information criterion. Geophys. J. Int., 104, 507-516, 1991.
112. Tang, C. H., Geology and Oil Potentialities of the Hukou Anticline,Hsinchu. Petrol. Geol. Taiwan, 2, 241-252, 1963.
113. Thomas, D., Geochemical Precursors to Seismic Activity. Pure Appl. Geophys., 126, 241-265, 1988.
114. Thomas, H. E., Fluctuation in ground-water level, Bull. Seismol. Soc. Am., 30, 93-97, 1940.
115. Tokunaga, T., Earthquake-induced hydrological changes and possible permeability enhancement due to the January 17, 1995 Kobe Earthquake, Japan. J. Hydro., 223, 221-229, 1999
116. Tsai, Y. B., T. L. Teng, J. M. Chin, and H. L. Liu,, Tectonic implications of the seismicity in the Taiwan Region. Mem. Geol. Soc. China, 2, 13-41, 1977.
117. Tsai, C. H., J. Y. Lin, H. Kuochen, K. C. Lin, GPS and groundwater observation on precursor studies in Taiwan. Proceeding of Japan-Taiwan International Workshop on Hydrological and Geochemical research for earthquake prediction, Tsukuba, 2004.
118. Turk, L. J., Diurnal fluctuations of water tables induced by atmospheric pressure changes. J. Hydrol., 26(1/2), 1-16, 1975.
119. Van der Kamp, G. and J.E. Gale, Theory of earth tides and barometric effects in porous formations with compressible grains , Water Resour. Res., 19, 538-544, 1983.
120. Vorhis, R. C., Interpretation of hydrologic data resulting from earthquakes, Geologische Rundschau, 43, 47-52, 1955.
121. Wakita, H., Water wells as possible indicators of tectonic strain, Science, 189, 553-555, 1975.
122. Wakita, H., Changes in groundwater level and chemical composition. In T. Asada Ed., Earthquake Prediction Technique. Univ. of Tokyo Press, Tokyo, 175-216, 1982.
123. Wang, C. Y., L. H. Cheng, C. V. Chin, and S. B. Yu, Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan. Geology, 29, 831-834, 2001.
124. Wang, C.Y., Alex Wong, Douglas S. Dreger and Michael Manga, Liquefaction Limit during Earthquakes and Underground Explosions: Implications on Ground-Motion Attenuation, Bulletin of the Seismological Society of America; v. 96; no. 1; p. 355-363, 2006.
125. Wang, C.Y., Liquefaction beyond the near field. Seismological Research Letters 78, 512-517, 2007.
126. Watanabe, K., Strain variations of the Yamasaki Fault zone, Southwest Japan, derived from extensometer observations (Part2)-on the short-term strain variations derived from strain steps. Bull. Disas. Prev. Res. Inst., Kyoto Univ., 41, 53-85, 1991.
127. Weeks, E. P., Field determination of vertical permeability to air in the unsatured zone. U. S. Geol. Surv. Prof. Pap., 1051, 1978.
128. Wenzel, H.-G., Format and structure for the exchange of high precision tidal data. Bulletin d'Informations Mareés Terrestres, voll 121, 9097-9101, Bruxelles 1995.
129. White, D. E., Hydrology, activity, and heat of the Steamboat Springs thermal system, Washoe County. Nevada, Geol. Surv, Prof. 458-C, United States Government Printing, Washington, D. C., 109, 1968.
130. Whitcomb, J. H., J.D. Garmany, D. L. Anderson, The dilatancy-diffusion model of earthquake prediction. Science, 180, 632, 1973.
131. Wu, F.T. and C.C. Feng, Gas well pressure fluctuation as an earthquake precursor. Petrol. Geol. Taiwan, 12, 141-148, 1975.
132. Yoshioka, R., S. Okuda and Y.Kitano, Calcium chloride type water discharged from the Matsushiro area in connection with swarm earthquakes. Geochem. J., 4, 61-74, 1970.
133. Yu, G. K., The evolution and anisotropy in structure of the Philippine sea plate. Sino-French Colloquium ongeodynamics of the Eurasian- Philippine Sea plate boundary, Taipei, 79, 1984.
134. Yu, G. K., and B. J. Mitchell, Water well fluctuations study in Taiwan. Proc. ROC-Japan Joint Seminar on Multiple Hazards Mitigation, Taipei, 1, 125-139 , 1985.
135. Yu, G. K., and B. J. Mitchell, A study of the non-tectonic influences on groundwater level fluctuatuations. Proc. Geol. Soc. China, 31 (1), 111-124, 1988.
136. Yu, S.B., H.Y. Chen, and L.C. Kuo, Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59, 1997.
137. 小泉尚嗣,地球化学的地震予知研究について,自然災害科学,16,41-60,1997。
138. 万迪堃、汪成民、李介成、万登堡、许学礼、黄保大、周旭明,地下水动态异常与地震短临预报,北京,地震出版社,1993。
139. 内藤宏人、吉川澄夫,地殻変動解析支援プログラムMICAP-G の開発,地震,52 (2),101-103,1999。
140. 行政院九二一震災災後重建推動委員會,網址:http://www.cpami.gov.tw/cpa921/main.htm,2000。
141. 江崇榮、賴典章及賴慈華,濁水溪沖積扇水文地質調查研究總報告,臺灣地區地下水觀測網第一期計畫, 經濟部水利署,1997。
142. 何春蓀臺灣地體構造的演變-臺灣地體構造圖說明書,經濟部中央地質調查所,共236頁,1982。
143. 何春蓀,臺灣地質概論,經濟部中央地質調查所,1986年11月。
144. 余貴坤、陳建文、吳鴻斌、羅應標、米契爾,「臺灣地區水壓變動之初步研究」,國立中央大學地球物理學刊,第26期,第27-38頁,1984。
145. 余貴坤,降雨量與深井水位變動的關係研究,臺灣地區地球物理研討會論文集,第165-174頁,1986。
146. 余貴坤、陳建文,深井水位變動預地震的關係研究,中國地質學會年會論文集,第26頁,1986。
147. 余貴坤、羅應標,水位變動紀錄呈現的一些地震訊息,第二屆臺灣地區地球物理研討會,第220-229頁,1988。
148. 余貴坤,臺灣區深井水位變動監測及其應用於地震預測的可行性,第一屆兩岸地震學術討論會論文集,地震出版社,第15-26頁,1992。
149. 李友平,九二一大地震前後濁水溪沖積扇地下含水層應力變化分析,第十二屆水利工程研討會論文集,G137-G144,2001。
150. 李民,集集地震前後與其同震水文變化研究,國立臺灣大學地質科學研究所博士論文,2002。
151. 李宗仰、邱豐聖、賴文基,南亞地震影響臺灣地下水水位之初步解析,第三屆資源與環境管理學術研討會論文集,第43-53頁,2005。
152. 李育民,克利金法於環境規劃之應用領域探討,中國環境工程學刊,第七卷,第三期,第241-251頁,1997
153. 李憲忠及呂靜渝,甲仙地震震源破裂過程,臺灣地震科學論壇:2010年3月4日甲仙地震,中研院地球所,2010。
154. 汪中和、彭宗仁、陳文福、李閔國、江崇榮,濁水溪沖積扇地下水氫氧同位素組成在集集地震前後的變化,第四屆地下水資源與水質保護研討會,365-371,2001。
155. 吳育生,利用觀測井調查分析水平地下水流及含水層海側邊界之研究,國立成功大學資源工程所博士論文,2007。
156. 美國地質調查所,http://www.usgs.gov/hazards/earthquakes/,2009。
157. 佐藤努、高橋誠、松本則夫、佃栄吉,1995年兵庫県南部地震後に生じた淡路島の湧水,地質ニュース496号,61-66頁,1995。
158. 岩村公太、小泉尚嗣及金嶋聰,安富観測井における短周期水位変動と地殻歪みの相関,東京工業技術大學碩士論文,共103頁,2002。
159. 林允斌、陳主惠、黃柏壽及譚義績,集集地震後水井水位變化模擬分析, 臺灣水利, 第49卷, 第3期, 第30-41頁,2001。
160. 林啟文、張徽正、盧詩丁、石同生、黃文正,臺灣活動斷層概論,經濟部中央地質調查所特刊,第十三號,p.72-77,2000
161. 邱靜怡,受動力作用下地層有效應力與地下水位變化之研究,國立成功大學資源工程研究所碩士論文,2004。
162. 秋田藤夫及松本則夫,北海道內溫泉井中四次規模大於7.5地震所造成的地下水位變化,地震,第二輯,第53卷,第193-204頁,2001。
163. 秦啟文、劉振宇及鄭立新,臺灣地區地下水-濁水溪沖積扇篇,第十一屆水利工程研討會論文集,臺灣大學,2000。
164. 國家地震工程研究中心,「九二一集集大地震全面勘災報告」,1999。
165. 陳文福及袁彼得,濁文扇洲之沉積環境初探,中國地質學會會刊,第42卷,第2期, 第269-288頁,1999。
166. 陳宗顯,降雨引致地下水位變化之研究-以那菝、六甲與東和地下水位站為例,國立成功大學水利與海洋工程研究所博士論文,2006。
167. 陳佳杏,集集地震前後濁水溪沖積扇地下水水位變化之探討,國立臺灣大學地質科學研究所碩士論文,2002。
168. 陳棋炫,地層受壓導致有效應力與孔隙水壓變化之耦合分析,國立臺灣大學地質科學研究所碩士論文,2001。
169. 游明聖,臺東縱谷斷層帶中之橫移斷層特徵,地質,第14卷,第1期,第121-147頁,1994。
170. 經濟部中央地質調查所,九二一地震地質調查報告,1999。
171. 經濟部中央地質調查所,臺灣地區地下水觀測網第一期計劃(81~87年度)之濁水溪沖積扇水文地質調查研究總報告,1999。
172. 經濟部水利處,九二一大地震後濁水溪沖積扇地表地下水位變動分析報告, 2000。
173. 經濟部水利處,臺灣地區地下水通訊,中華民國八十八年九月號(No.8809-038),台中,1999。
174. 董志秋,由同震水文反應估算含水層特性與地質材料性質之研究,國立成功大學資源工程研究所碩士論文,2003。
175. 董倫道、楊潔豪及陳平護,濁水溪沖積扇地球物理探測與地層對比, 臺灣區地下水觀測網計畫第一期-水文地質調查研究及建檔, 經濟部水利署,1996。
176. 賈儀平,集集地震發生前後地下水位變化,自然科學簡訊,第11卷第4期,第136-138頁,1999。
177. 賈儀平、王原賢、陳佳杏、吳雪蘋,集集大地震前後濁水溪沖積扇之地下水位變化,第四屆地下水資源與水質保護研討會論文集,359-363,2001。
178. 鄭欽韓,九二一地震前後地下水水位及含水層應力變化分析,國立成功大學水利及海洋工程研究所碩士論文,2002。
179. 饒瑞鈞,臺灣的地震地體構造,臺灣之活動斷層與地震災害研討會論文集,第30-48頁,臺灣、台中,2002。
180. 聯合國環境規劃署,http://www.unep.org/chinese/conflictsanddisasters/,2005。