| 研究生: |
徐明康 Hsu, Ming-Kang |
|---|---|
| 論文名稱: |
以ABAQUS有限元素法模擬分析III型應力強度因子 Determination of III Stress Intensity Factors by Using a Finite Element Numerical Simulation with ABAQUS |
| 指導教授: |
王建力
Wang, Chein-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 應力強度因子 、ABAQUS 、有限元素分析 、Contour integral 、XFEM |
| 外文關鍵詞: | stress intensity factors, ABAQUS, Finite element analysis (FEA), contour integral, XFEM |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在工程環境中,一個結構物在外力作用下,斷成兩半或是許多塊是一個極為普通之現象。結構物產生破壞的前兆,大多是由結構物組成之材料內的微小裂縫造成。斷裂力學的研究即是針對含有裂紋之構件進行固體力學分析,計算應力強度因子進而決定材料之斷裂韌度為其重要的研究環節。
本研究根據帥玉康(2008)之平板彎曲試驗,周威霆(2012)之邊緣裂縫石膏圓盤試驗,以及石秉儒(2018)之四點彎曲試驗進行有限元素分析,並利用模擬軟體ABAQUS計算III型應力強度因子。
本研究利用ABAQUS之Contour integral進行平板彎曲試驗模擬並與其公式解及ANSYS數值解比較與誤差計算;對於邊緣裂縫石膏圓盤試驗模擬以及四點彎曲試驗模擬皆以Contour integral與XFEM二種方法進行裂縫設定並進行分析與誤差計算。研究結果顯示,平板彎曲試驗模擬中,ABAQUS計算之KIII值相較於ANSYS之值更為接近解析解,誤差大約落於1%左右。在邊緣裂縫石膏圓盤試驗模擬與四點彎曲試驗模擬中,Contour integral與XFEM計算之結果接近但略有5%差異。
關鍵字:應力強度因子、ABAQUS、有限元素分析、Contour integral、XFEM。
In the engineering environment, destruction of structures could be caused by the growth of tiny cracks inside the material. The study of fracture mechanics is the analysis of mechanical response at the crack tip of the material under various types of loadings. The evaluation of stress intensity factors for a cracked material is fundamentally important for the determination of the fracture toughness of the material.
The experimental loading records and material parameters of the models including Young's modulus and Poisson's ratio were adopted from previous studies of Shuai (2008), Chou (2012), and Shih (2018). In this study, these numerical models were established by ABAQUS from which the mode III stress intensity factors can be calculated.
Two methods of crack setting including contour integral method and extended finite element method (XFEM) were applied in the analysis when only one crack was presented in the model such as the edged crack disk test and the four-point bending test. However, only contour integral method was applied in the plate bending test because XFEM was not available for problems of multiple cracks. Element selections and meshing were also discussed in this study.
This study compares the simulation results of the mode III stress intensity factors from ABAQUS with the results from previous studies. The discrepancy of these results based on contour integral and XFEM methods were also assessed in the study.
Keywords: stress intensity factors, ABAQUS, Finite element analysis (FEA), contour integral, XFEM.
交通技術標準規範公路類公路工程部。「公路隧道設計規範」。台北市:交通部。2003。
庄茁,由小川,廖劍暉,岑松,沈新普,梁明剛。「基於ABAQUS的有限元分析與應用」。北京:清華大學出版社。2009。
程靳,趙樹山。「斷裂力學」。北京:科學出版社。2006。
士盟科技股份有限公司。「ABAQUS最新實務入門」。台北市:全華圖書股份有限公司。2013。
周威霆。「邊緣裂縫圓盤石膏III型斷裂韌度量測之研究」。國立成功大學資源工程學系碩士論文。2012。
帥玉康。「以平板彎曲試驗求取石材 III 型破裂韌度之研究」。國立成功大學資源工程學系碩士論文。2008。
張育源。「四點彎曲試驗下砂岩之複合型斷裂韌度與其基本力學性質之研究」。國立成功大學資源工程學系碩士論文。2017。
張群和。「高溫環境下高鋁水泥之III型斷裂韌度量測與其基本力學性質之研究」。國立成功大學資源工程學系碩士論文。2016。
陳志豪。「複合楔形體之反平面剪力變形分析」。國立成功大學資源工程學系博士論文。2009。
陳楠輝。「邊緣裂縫圓盤岩石試體III型斷裂韌度量測之研究」。國立成功大學資源工程學系碩士論文。2014。
謝海峰,饒秋華,王志。「反平面剪切(III型)加載下脆性岩石的斷口分析」。岩石力學與工程學報,第26卷,第9期,第1832–1839頁。2007。
石秉儒。「不同溫度下砂岩之四點彎曲複合型斷裂韌度試驗與其基本力學性質之研究」。國立成功大學資源工程學系碩士論文。2018。
李權仁。「以四點彎曲試驗決定I+II型斷裂韌度之有限元素模擬」。國立成功大學資源工程學系碩士論文。2018。
李奕奇。「以ABAQUS有限元素法分析四點彎曲試體之I+II型應力強度因子」。國立成功大學資源工程學系碩士論文。2020。
洪榮燦。「彈性結構破壞之有限元素分析與其應用實例探討」。國立成功大學機械工程學系碩士論文。2016。
Aliha, M. R. M., Bahmani, A., Akhondi, S., “Determination of mode III fracture toughness for different materials using a new designed test configuration,” Materials and Design, Vol. 86, pp. 863–871, 2015.
Anderson, T. L., Fracture mechanics fundamental and applications, CRC Press, Florida, pp. 100–101, 1991.
Ayatollahi, M. R., Aliha, M. R. M., “On the use of an anti-symmetric four-point bend specimen for mode II fracture experiments,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 34, pp. 898–907, 2011.
Ayatollahi, M. R., Dehghany, M., Kaveh, Z., “Computation of V-notch shape factors in four-point bend specimen for fracture tests on brittle materials,” Archive of Applied Mechanics, Vol. 83, pp. 345–356, 2012
Ayatollahi, M. R., Karami, J., Saboori, B., “Mixed mode II/ III fracture experiments on PMMA using a new test configuration,” European Journal of Mechanics/ A Solids, Vol. 77, 103812, 2019.
Bashir, R., Xue, H., Zhang, J., Guo, R., Hayat, N., Li, G., Bi, Y., “Effect of XFEM mesh desity (mesh size) on stress intesity factors (K), strain gradient (dε/dr) and stress corrosion cracking (SCC) growth rate,” Strutures, Vol. 25, pp. 593-602, 2020.
Benvenuti, E., “An effective XFEM with equivalent eigenstrain for stress intensity factors of homogeneous plates,” Computer Methods in Applied Mechanics and Engineering, Vol. 321, pp. 427-454, 2017.
Campagnolo, A., Berto, F., “Three-dimensional effects on cracked discs and plates under nominal Mode III loading,” A. Campagnolo et alii, Frattura ed Integrità Strutturale, Vol. 34, pp. 190–199, 2015.
Canturri, C., Greenhalgh, E. S., Pinho, S. T., “The relationship between mixed-mode II/III delamination and delamination migration in composite laminates,” Composites Science and Technology, Vol. 105, pp. 102–109, 2014.
Davidson, B. D., Sediles, F. O., “Mixed-mode I-II-III delamination toughness determination via a shear–torsion-bending test,” Composites: Part A, Vol. 42, pp. 589–603, 2011.
Farshad, M., Flueler, P., “INVESTIGATION OF MODE III FRACTURE TOUGHNESS USING AN ANTI-PLASTIC PLATE BENDING METHOD,” Engineering Fracture Mechanics, Vol. 60, pp. 597-603, 1998.
Ge, Y., Gong, X., Hurez, A., Luycker, E. D., “Test methods for measuring pure mode III delamination toughness of composite,” Polymer Testing, Vol. 55, pp. 261–268, 2016.
Griffith, A. A., “The phenomenon of rupture and flow in solids, ” Philosophical Transactions of the Royal Society of London, Series A, Vol. 221, pp. 163–198, 1921.
Ghajar, R., Moghaddam, A. S., “Numerical investigation of the mode III stress intensity factors in FGMs considering the effect of graded Poisson’s ratio,” Engineering Fracture Mechanics, Vol. 78, pp. 1478-1486, 2011.
Inglis, C., “Stress in a Plate Due to the Presence of Crack and Sharp Corners,” Transactions of Institute of Naval Architects, 55, pp. 219-241, 1913.
Irwin, G. R. Fracture dynamics, Proceedings of the ASM Symposium on Fracturing of Metals, Cleveland (Oh), pp. 147-166. 1948.
Irwin, G. R. “Analysis of Stresses and Strain near the End of a Crack Traversing a Plate, ” Journal of Applied Mechanics, Vol. 24, pp. 361-364, 1957.
Johnston, A. L., Davidson, B. D., “Intrinsic coupling of near-tip matrix crack formation to mode III delamination advance in laminated polymeric matrix composites,” International Journal of Solids and Structures, Vol. 51, pp. 2360–2369, 2014.
López-Menénde, A., Viña1, J., Argüelles, A., Rubiera, S., Mollón, V., “A new method for testing composite materials under mode III fracture,” Journal of Composite Materials, Vol. 50, No. 28, pp. 3973–3980, 2016.
Miura, M., Shindo, Y., Takeda, T., Narita, F., “Interlaminar fracture characterization of woven glass/epoxy composites under mixed-mode II/III loading conditions at cryogenic temperatures,” Engineering Fracture Mechanics, Vol. 96, pp. 615–625, 2012.
Mehrabadi, F. A., “The use of ECT and 6PBP tests to evaluate fracture behavior of adhesively bonded steel/epoxy joints under mode-III and mixed mode III/ II,” Applied Adhesion Science, Vol. 2, 2014.
Orowan, E., “Fracture and Strength of Solids,” Reports on Progress in Physics, Vol. XII, pp. 185, 1948.
Oyadiji, S.O., Treifi, M., “Evaluation of mode III stress intensity factors for bi-material notched bodies using the fractal-like finite element method,” Computer and Structures, Vol. 129, pp. 99-110, 2013.
Rice, J. R., Rosengren, G. F., “Plane Strain Deformation near a Crack Tip in a Power-Law Hardening Material,” Journal of the Mechanics and Physics of Solids, Vol. 16, pp. 1-12, 1968.
Rizov, V., “Mixed-mode II/III fracture in foam core sandwich beams,” Cellular Polymers, Vol. 33, No. 6, pp. 287–300 , 2014.
Rodríguez, G., Bonilla, J., Hernández, J., “Numerical modeling of reinforced concrete continuous deep beams,” Revista Ingeniería de Construcción, Vol. 31, 2016.
Tohgo, K., Otsuka, A., Yuuki, R., “Fatigue crack growth of a mixed mode three-dimensional crack (1st Report, Analysis of stress intensity factors of mixed mode three-dimensional cracks based on the J-Integral concept),” Transactions of the Japan Society of Mechanical Engineers Series A, Vol. 52, No. 476, pp. 909–918, 1986.
Vojtek, T., Pippan, R., Hohenwarter, A., Holáň, L., Pokluda, J., “Near-threshold propagation of mode II and mode III fatigue cracks in ferrite and austenite,” Acta Materialia, Vol. 61, pp. 4625–4635, 2013.
Vaziri, A., Nayeb-Hashemi, H., “The effect of crack surface interaction on the stress intensity factor in Mode III crack growth in round shafts,” Engineering Fracture Mechanics, Vol. 72, pp. 617-629, 2005.
Williams, M. L. “On the Stress Distribution at the Base of a Stationary Crack,” Jouranal of Applied Mechanics, Vol. 24, pp. 109-114, 1957.
Westergaard, H. M., “Bearing Pressures and Cracks,” Journal of Applied Machanics, Vol. 24, pp. 49-53, 1957.
Williams, G., Fracture mechanics of polymers. New York: Wiley, 1984.
Zehnder, A. T., Fracture Mechanics, pp. 7-12, 2012.