| 研究生: |
李清華 Lee, Ching-hua |
|---|---|
| 論文名稱: |
陽極沉積錳氧化物薄膜之擬電容穩定性研究 A study on pseudo-capacitive stability of anodically deposited manganese oxide film |
| 指導教授: |
黃啟祥
Hwang, Chii-shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 定電位 、循環伏安 、錳氧化物 、超高電容器 、穩定性 |
| 外文關鍵詞: | cyclic voltammetry, manganese oxide, potentiostatic, supercapacitor, stability |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超高電容器電極材料之研發,近來深受注目,其中錳氧化物為相當可期待的電極材料之ㄧ。本研究旨在以定電位陽極沉積法及循環伏安陽極沉積法兩種製程,製備出應用於超高電容器之錳氧化物薄膜電極,並比較其擬電容特性。錳氧化物薄膜電極之擬電容特性,包括比電容值評估及擬電容穩定性之測試(擬電容穩定性以比電容值衰退率表示),是利用循環伏安法於0-1V電壓範圍內,以0.1 M Na2SO4當測試電解液,在25℃下進行之,並分析不同測試圈數後之錳氧化物電極之材料特性,檢討影響擬電容穩定性之原因。
以定電位陽極沉積法及循環伏安陽極沉積法所製得之錳氧化物薄膜皆結晶性不佳,其表面形態皆為奈米纖維結構。以循環伏安沉積法製備之錳氧化物薄膜,其孔隙度、含水量、比電容值及擬電容穩定性皆高於以定電位陽極沉積法之錳氧化物薄膜;二者之比電容值分別為214.4 F/g及181.2 F/g,衰退率分別為 9.5%及19.6%。以循環伏安沉積法製備之錳氧化物薄膜,其擬電容穩定性等優於以定電位沉積法製備之薄膜,推測是在測試過程中其奈米纖維結構逐漸轉變產生片狀結構所致。此外兩種沉積法製備之錳氧化物薄膜經長時效充放電後,其錳氧化物表面形態變為更緻密,結晶性亦變佳,導致比電容值降低。
The research and development of capacitor’s electrode materials has got a lot of attention recently, especially manganese oxide, is one of the promising electrode materials. This study’s purpose was to prepare manganese oxides which were applied on capacitor by potentiostatic and cyclic voltammetric anodic deposition methods, and to compare the pseudo-capacitive characteristics. The pseudo-capacitive characteristics analysis including specific capacitance (SC value) and pseudo-capacitive stability (SC value decay rate was shown as stability) evaluation, were analyzed by cyclic voltammetry test which was proceeded in 0.1M Na2SO4 solution at 25℃ with voltage scan range of 0-1V. And the material characteristics of manganese oxide films tested with different cycle number were analyzed to realize the affect factors on the pseudo-capacitive stability.
Both of manganese oxide films prepared by different methods showed low crystallinity and fiber-like structures. The manganese oxide film prepared by cyclic voltammetric method had higher porosity, water content, SC value and pseudo-capacitive stability than that of the film prepared by potentiostatic method. The SC value were 214.4 F/g and 181.2 F/g respectively, and the SC value decay rates were 9.5% and 19.6% respectively. The reason that the pseudo-capacitive stability of the manganese oxide film prepared by cyclic voltammerty method was better than that of the film prepared by potentiostatic method, was conjectured to be the sheet-like structure formed during cyclic voltammetry test. Beside, the surface morphology was denser and the crystallinity was better for the manganese oxide films after charging-discharging test, and then that induced the decrease of SC value.
1. B. E. Conway, "Transition from “supercapacitor” to “battery” behavior in
electrochemical energy storage", J. Electrochem. Soc., 138 (1991) 1539.
2. R. A. Huggins, "Supercapacitors and Electrochemical Pulse Sources",
Solid State Ionics, 134 (2000) 179.
3. I. Tanahashi, A. Yoshida and A. Nishino, "Preparation and Characterization
of Activated Carbon Tables for Electric Double-Layer Capacitors", Bull.
Chem. Soc. Jpn., 63 (1900) 2755.
4. T. C. Weng and H. Teng, "Characterization of High Porosity Carbon
Electrodes Derived from Mesophase pitch for Electric Double-Layer
Capacitors", J. Electrochem. Soc., 148 (2001) A368
5. J. P. Zheng and T. R. Jow, "A new charge storage mechanism for
electrochemical capacitors", J. Electrochem. Soc., 142 (1995) L6.
6. J. P. Zheng, P. J. Cygan and T. R. Jow, "Hydrous ruthenium oxide as an
electrode material for electrochemical capacitors", J. Electrochem. Soc.,
142 (1995) 2699.
7. T. Shinomiya, V. Gupta and N. Miura, "Effects of electrochemical
-deposition Method and Microstructure on the Capacitive Characteristics
of Nano-sized Manganese Oxide", Electrochimica Acta 51 (2006)
4412–4419
8. K. R. Prasad and N. Miura, "Electrochemically synthesized MnO2-based
mixed oxides for high performance redox supercapacitors", Electrochem.
Communications 6 (2004) 1004–10089. K. R. Prasad and N. Miura, "Electrochemical synthesis and
characterization of nanostructured tin oxide for electrochemical redox
supercapacitors", Electrochem. Communications 6 (2004) 849–852
10. T. Cottineau and M. Toupin, "Nanostructured transition metal oxides for
aqueous hybrid electrochemical supercapacitors", Appl. Phys., A 82 (2006)
599–606
11. G. Lodi, E. Sivieri, A. DeBattisti and S. Trasatti, "Ruthenium
dioxide-based film electrodes", J. Appl. Electrochem., 8 (1978) 135-143
12. M. Toupin, T. Brousse and D. Belanger, "Influence of microstructure on
the charge storage properties of chemically synthesized manganese
dioxide," Chemistry of Materials, 14 (2002) 3946.
13. E. Raymundo-Pinero, V. Khomenko, E. Frackowiak and F. Beguin,
"Performance of manganese oxide/CNTs composites as electrode materials
for electrochemical capacitors," Journal of the Electrochemical Society,
152 (2005) 229.
14. H. Y. Lee, H. Y. Lee and S. W. Kim, "Expansion of active site area and
improvement of kinetic reversibility in electrochemical pseudocapacitor
electrode," Electrochemical and Solid-State Letters, 4 (2001) 19.
15. R. N. Reddy and R. G. Reddy, "Synthesis and electrochemical
characterization of amorphous MnO2 electrochemical capacitor electrode
material," Journal of Power Sources, 132 (2004) 315.
16. S. C. Pang, M. A. Anderson and T. W. Chapman, "Novel electrode
materials for thin-film ultracapacitors: comparison of electrochemical
properties of sol-gel-derived and electrodeposited manganese dioxide,"
Journal of the Electrochemical Society, 147 (2000) 444.17. B. Djurfors, J. N. Broughton, M. J. Brett and D. G. Ivey, "Electrochemical
oxidation of Mn/MnO films: Formation of an electrochemical capacitor,"
Acta Materialia, 53 (2005) 957.
18. B. Djurfors, J. N. Broughton, M. J. Brett and D. G. Ivey, "Electrochemical
oxidation of Mn/MnO films: Mechanism of porous film growth," Journal
of the Electrochemical Society, 153 (2006) 64.
19. S. Rodrigues, N. Munichandraiah and A. K. Shukla, "A cyclic
voltammetric study of the kinetics and mechanism of electrodeposition of
manganese dioxide", J. Appl. Electrochem. 28 (1998) 1235-1241
20. C. C. Hu and T. W. Tsou, "Capacitive and textural characteristics of
hydrous manganese oxide prepared by anodic deposition," Electrochimica
Acta, 47 (2002) 3523.
21. J. K. Chang and W. T. Tsai, "Effects of temperature and concentration on
the structure and specific capacitance of manganese oxide deposited in
manganese acetate solution," Journal of Applied Electrochemistry, 34
(2004) 953.
22. J. K. Chang, Y. L. Chen and W. T. Tsai, "Effect of heat treatment on
material characteristics and pseudo-capacitive properties of manganese
oxide prepared by anodic deposition," Journal of Power Sources, 135
(2004) 344.
23. C. C. Hu and C. C. Wang, "Nanostructures and capacitive characteristics
of hydrous manganese oxide prepared by electrochemical deposition,"
Journal of the Electrochemical Society, 150 (2003) 1079.
24. J. K. Chang and W. T. Tsai, "Material characterization and electrochemical
performance of hydrous manganese oxide electrodes for use inelectrochemical pseudocapacitors," Journal of the Electrochemical Society,
150 (2003) 1333.
25. 粘喬琳, 定電流陽極沉積錳氧化物之電極製備及其特性研究, 國立成
功大學材料科學及工程學系碩士論文, (2006).
26. K. R. Prasad and N. Miura, "Potentiodynamically deposited
nanostructured manganese dioxide as electrode material for
electrochemical redox supercapacitors", J. Power Sources 135 (2004)
354–360
27. S. Wen, J.-W. Lee, I.-H. Yeo, J. Park and S.-I. Mho, "The role of cations of
the electrolyte for the pseudocapacitive behavior of metal oxide electrodes,
MnO2 and RuO2," Electrochimica Acta, 50 (2004) 849.
28. M. Pourbaix, Atlas of electrochemical equilibrium in aqueous solutions,
National Association of Corrosion Engineers, (1966).
29. 朱聖凱, 水熱電化學法陽極沉積錳氧化物之電極製備及其特性之研究,
國立成功大學材料科學及工程學系碩士論文, (2004).
30. J. K. Chang and W. T. Tsai, "Effects of temperature and concentration on
the structure and specific capacitance of manganese oxide deposited in
manganese acetate solution", J. Appl. Electrochem., 34 (2004) 953.
31. C.C. Hu and T. W. Tsou, "The optimization of specific capacitance of
amorphous manganese oxide for electrochemical supercapacitors using
experimental strategies", J. Power Sources 115 (2003) 179.
32. K. W. Nam and K. B. Kima, "Manganese Oxide Film Electrodes Prepared
by Electrostatic Spray Deposition for Electrochemical Capacitors ", TheElectrochem. Soc. , 153 (1) (2006) A81-A88
33. M. Wu, G. A. Snook, G. Z. Chen and D. J. Fray, "Redox deposition of
manganese oxide on graphite for supercapacitors", Electrochemistry
Communications 6 (2004) 499-504
34. R. Kotz and M. Carlen, "Principles and applications of electrochemical
capacitors," Electrochimica Acta, 45 (2000) 2483.
35. 張仍奎, 超高電容器錳氧化物電極之電化學製備法、材料特性及擬電
容行為, 國立成功大學材料科學及工程學系博士論文, (2005).
36. B. E. Conway, "Electrochemical Supercapacitors – Scientific
Fundamentals and Technology Applications", Kluwer Academic /Plenum,
New York (1999)
37. 黃孟娟, 張榮錡, "釕氧化物超高電容器材料特性簡介," 工業材料 182
期, (2002) 122.
38. 薛立人, "高性能電容器," 工業材料 166 期, (2000) 121
39. 曾文男, "導電高分子於高儲能電容器上之應用," 工業材料 176 期,
(2001) 145.
40. S. Trasatti, "Physical electrochemistry of ceramic oxides," Electrochimica
Acta, 36 (1991) 225.
41. H. Kim, J. H. Kim, Y. H. Lee and K. B. Kim, "Synthesis and
characterization of electrochemically prepared ruthenium oxide on carbon
nanotube film substrate for supercapacitor applications," Journal of The
Electrochemical Society, 152 (2005) A2170.
42. 黃瑞雄, 顏溪成, " 漫談電化學," 科學發展359 期 (2002) 22.43. 王世育, 四氧化三鐵/碳材超高電容器之特性與機制探討, 國立台灣大
學化學工程學研究所博士論文, (2004).
44. V. Subramanian, H. Zhu and B. Wei, "Nanostructured MnO2:
Hydrothermal synthesis and electrochemical properties as a supercapacitor
electrode material", J. Power Sources 159 (2006) 361–364
45. J. K. Chang and W. T. Tsai, "Microstructure and Pseudocapacitive
Performance of Anodically Deposited Manganese Oxide with Various
Heat-Treatments", J. Electrochem. Soc., 152 10 (2005) A2063-A2068
46. N. Nagarajan, H. Humadi and I. Zhitomirsky, "Cathodic electrodeposition
of MnOx films for electrochemical supercapacitors", Electrochimica Acta
51 (2006) 3039–3045
47. C. C. Hu and T. W. Tsou, "Ideal capacitive behavior of hydrous manganese
oxide prepared by anodic deposition", Electrochem. Communications 4
(2002) 105–109
48. E. Machefaux, T. Brousse, D. B′elanger and D. Guyomard,
"Supercapacitor behavior of new substituted manganese dioxides", J.
Power Sources 165 (2007) 651–655
49. R. N. Reddy and R. G. Reddy, "Sol–gel MnO2 as an electrode material for
electrochemical capacitors", J. Power Sources 124 (2003) 330–337
50. V. Subramanian, H. Zhu and B. Wei, "Synthesis and electrochemical
characterizations of amorphous manganese oxide and single walled carbon
nanotube composites as supercapacitor electrode materials", Electrochem.
Communications 8 (2006) 827–832
51. S. Devaraj and N. Munichandraiah, "Electrochemical SupercapacitorStudies of Nanostructured α-MnO2 Synthesized by Microemulsion
Method and the Effect of Annealing", Journal of The Electrochemical
Society, 154 2 (2007) A80-A88
52. 蕭宇尊, 動電位陽極沉積錳氧化物薄膜之製備及其擬電容行為, 國立
成功大學材料科學及工程學系碩士論文, (2006).
53. C. D. Wagner, J. F. Moulder, L. E. Davis and W. M. Riggs, "Handbook of
X-ray photoelectron spectroscopy", Perking-Elmer Corporation. (1995)
226.
54. M. Chigane and M. Ishikawa, "Manganese oxide thin film preparation by
potentiostatic electrolyses and electrochromism," J. Electrochem. Soc.,
147 (6) (2000) 2246-2251.
55. A. Era, Z. Takehara and S. Yoshizawa, "Discharge mechanism of
manganese dioxide electrode", Electrochim. Acta, 12 (1967) 1199.