簡易檢索 / 詳目顯示

研究生: 李清華
Lee, Ching-hua
論文名稱: 陽極沉積錳氧化物薄膜之擬電容穩定性研究
A study on pseudo-capacitive stability of anodically deposited manganese oxide film
指導教授: 黃啟祥
Hwang, Chii-shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 105
中文關鍵詞: 定電位循環伏安錳氧化物超高電容器穩定性
外文關鍵詞: cyclic voltammetry, manganese oxide, potentiostatic, supercapacitor, stability
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超高電容器電極材料之研發,近來深受注目,其中錳氧化物為相當可期待的電極材料之ㄧ。本研究旨在以定電位陽極沉積法及循環伏安陽極沉積法兩種製程,製備出應用於超高電容器之錳氧化物薄膜電極,並比較其擬電容特性。錳氧化物薄膜電極之擬電容特性,包括比電容值評估及擬電容穩定性之測試(擬電容穩定性以比電容值衰退率表示),是利用循環伏安法於0-1V電壓範圍內,以0.1 M Na2SO4當測試電解液,在25℃下進行之,並分析不同測試圈數後之錳氧化物電極之材料特性,檢討影響擬電容穩定性之原因。
    以定電位陽極沉積法及循環伏安陽極沉積法所製得之錳氧化物薄膜皆結晶性不佳,其表面形態皆為奈米纖維結構。以循環伏安沉積法製備之錳氧化物薄膜,其孔隙度、含水量、比電容值及擬電容穩定性皆高於以定電位陽極沉積法之錳氧化物薄膜;二者之比電容值分別為214.4 F/g及181.2 F/g,衰退率分別為 9.5%及19.6%。以循環伏安沉積法製備之錳氧化物薄膜,其擬電容穩定性等優於以定電位沉積法製備之薄膜,推測是在測試過程中其奈米纖維結構逐漸轉變產生片狀結構所致。此外兩種沉積法製備之錳氧化物薄膜經長時效充放電後,其錳氧化物表面形態變為更緻密,結晶性亦變佳,導致比電容值降低。

    The research and development of capacitor’s electrode materials has got a lot of attention recently, especially manganese oxide, is one of the promising electrode materials. This study’s purpose was to prepare manganese oxides which were applied on capacitor by potentiostatic and cyclic voltammetric anodic deposition methods, and to compare the pseudo-capacitive characteristics. The pseudo-capacitive characteristics analysis including specific capacitance (SC value) and pseudo-capacitive stability (SC value decay rate was shown as stability) evaluation, were analyzed by cyclic voltammetry test which was proceeded in 0.1M Na2SO4 solution at 25℃ with voltage scan range of 0-1V. And the material characteristics of manganese oxide films tested with different cycle number were analyzed to realize the affect factors on the pseudo-capacitive stability.
    Both of manganese oxide films prepared by different methods showed low crystallinity and fiber-like structures. The manganese oxide film prepared by cyclic voltammetric method had higher porosity, water content, SC value and pseudo-capacitive stability than that of the film prepared by potentiostatic method. The SC value were 214.4 F/g and 181.2 F/g respectively, and the SC value decay rates were 9.5% and 19.6% respectively. The reason that the pseudo-capacitive stability of the manganese oxide film prepared by cyclic voltammerty method was better than that of the film prepared by potentiostatic method, was conjectured to be the sheet-like structure formed during cyclic voltammetry test. Beside, the surface morphology was denser and the crystallinity was better for the manganese oxide films after charging-discharging test, and then that induced the decrease of SC value.

    中文摘要................................................Ⅰ 英文摘要................................................Ⅱ 誌謝....................................................Ⅲ 目錄....................................................Ⅳ 表目錄..................................................Ⅵ 圖目錄..................................................Ⅶ 第一章 緒論..............................................1 第二章 理論基礎與文獻回顧................................3 2-1 儲能元件簡介.......................................3 2-2 超高電容器 ........................................4 2-2-1 超高電容器之特性...............................4 2-2-2 超高電容器之分類...............................6 2-3 超高電容器之電極材料...............................8 2-3-1 金屬氧化物電極材料.............................9 2-3-2 錳氧化物電極製備方法...........................9 2-4 錳氧化物薄膜的儲能機構............................14 2-5 錳氧化物薄膜的擬電容穩定性........................15 第三章 實驗方法及步驟...................................34 3-1電極材料製備.......................................34 3-1-1鈦箔基材前處理.................................34 3-1-2 陽極沈積錳氧化物薄膜..........................34 3-2藥品與製備錳氧化物薄膜之儀器設備...................35 3-3錳氧化物薄膜電極製作流程...........................35 3-4錳氧化物薄膜之性質分析.............................37 3-4-1 電容特性分析..................................37 3-4-2 晶體結構分析..................................38 3-4-3 微觀組織分析..................................38 3-4-4 化學性質分析..................................39 3-4-5 電解液元素分析................................40 第四章 結果與討論.......................................43 4-1 陽極沉積錳氧化物薄膜..............................43 4-1-1 定電位陽極沉積錳氧化物........................43 4-1-2 循環伏安陽極沉積錳氧化物......................44 4-2 錳氧化物薄膜的循環伏安行為及比電容值..............44 4-3 錳氧化物薄膜之穩定性分析..........................45 4-3-1 錳氧化物對不同電位掃描速率之穩定性................45 4-3-2 錳氧化物對掃描圈數之穩定性........................47 4-4 錳氧化物薄膜晶體結構的低掠角X-ray分析.............49 4-5 錳氧化物化合狀態的XPS分析.........................50 4-6 錳氧化物薄膜表面形貌觀察..........................51 4-7 錳氧化物的FTIR分析................................54 4-8 錳氧化物微觀組織結構的TEM分析.....................54 4-9 電解液之ICP-OES分析...............................57 4-10 總結.............................................58 第五章 結論.............................................97 參考文獻................................................99

    1. B. E. Conway, "Transition from “supercapacitor” to “battery” behavior in
    electrochemical energy storage", J. Electrochem. Soc., 138 (1991) 1539.
    2. R. A. Huggins, "Supercapacitors and Electrochemical Pulse Sources",
    Solid State Ionics, 134 (2000) 179.
    3. I. Tanahashi, A. Yoshida and A. Nishino, "Preparation and Characterization
    of Activated Carbon Tables for Electric Double-Layer Capacitors", Bull.
    Chem. Soc. Jpn., 63 (1900) 2755.
    4. T. C. Weng and H. Teng, "Characterization of High Porosity Carbon
    Electrodes Derived from Mesophase pitch for Electric Double-Layer
    Capacitors", J. Electrochem. Soc., 148 (2001) A368
    5. J. P. Zheng and T. R. Jow, "A new charge storage mechanism for
    electrochemical capacitors", J. Electrochem. Soc., 142 (1995) L6.
    6. J. P. Zheng, P. J. Cygan and T. R. Jow, "Hydrous ruthenium oxide as an
    electrode material for electrochemical capacitors", J. Electrochem. Soc.,
    142 (1995) 2699.
    7. T. Shinomiya, V. Gupta and N. Miura, "Effects of electrochemical
    -deposition Method and Microstructure on the Capacitive Characteristics
    of Nano-sized Manganese Oxide", Electrochimica Acta 51 (2006)
    4412–4419
    8. K. R. Prasad and N. Miura, "Electrochemically synthesized MnO2-based
    mixed oxides for high performance redox supercapacitors", Electrochem.
    Communications 6 (2004) 1004–10089. K. R. Prasad and N. Miura, "Electrochemical synthesis and
    characterization of nanostructured tin oxide for electrochemical redox
    supercapacitors", Electrochem. Communications 6 (2004) 849–852
    10. T. Cottineau and M. Toupin, "Nanostructured transition metal oxides for
    aqueous hybrid electrochemical supercapacitors", Appl. Phys., A 82 (2006)
    599–606
    11. G. Lodi, E. Sivieri, A. DeBattisti and S. Trasatti, "Ruthenium
    dioxide-based film electrodes", J. Appl. Electrochem., 8 (1978) 135-143
    12. M. Toupin, T. Brousse and D. Belanger, "Influence of microstructure on
    the charge storage properties of chemically synthesized manganese
    dioxide," Chemistry of Materials, 14 (2002) 3946.
    13. E. Raymundo-Pinero, V. Khomenko, E. Frackowiak and F. Beguin,
    "Performance of manganese oxide/CNTs composites as electrode materials
    for electrochemical capacitors," Journal of the Electrochemical Society,
    152 (2005) 229.
    14. H. Y. Lee, H. Y. Lee and S. W. Kim, "Expansion of active site area and
    improvement of kinetic reversibility in electrochemical pseudocapacitor
    electrode," Electrochemical and Solid-State Letters, 4 (2001) 19.
    15. R. N. Reddy and R. G. Reddy, "Synthesis and electrochemical
    characterization of amorphous MnO2 electrochemical capacitor electrode
    material," Journal of Power Sources, 132 (2004) 315.
    16. S. C. Pang, M. A. Anderson and T. W. Chapman, "Novel electrode
    materials for thin-film ultracapacitors: comparison of electrochemical
    properties of sol-gel-derived and electrodeposited manganese dioxide,"
    Journal of the Electrochemical Society, 147 (2000) 444.17. B. Djurfors, J. N. Broughton, M. J. Brett and D. G. Ivey, "Electrochemical
    oxidation of Mn/MnO films: Formation of an electrochemical capacitor,"
    Acta Materialia, 53 (2005) 957.
    18. B. Djurfors, J. N. Broughton, M. J. Brett and D. G. Ivey, "Electrochemical
    oxidation of Mn/MnO films: Mechanism of porous film growth," Journal
    of the Electrochemical Society, 153 (2006) 64.
    19. S. Rodrigues, N. Munichandraiah and A. K. Shukla, "A cyclic
    voltammetric study of the kinetics and mechanism of electrodeposition of
    manganese dioxide", J. Appl. Electrochem. 28 (1998) 1235-1241
    20. C. C. Hu and T. W. Tsou, "Capacitive and textural characteristics of
    hydrous manganese oxide prepared by anodic deposition," Electrochimica
    Acta, 47 (2002) 3523.
    21. J. K. Chang and W. T. Tsai, "Effects of temperature and concentration on
    the structure and specific capacitance of manganese oxide deposited in
    manganese acetate solution," Journal of Applied Electrochemistry, 34
    (2004) 953.
    22. J. K. Chang, Y. L. Chen and W. T. Tsai, "Effect of heat treatment on
    material characteristics and pseudo-capacitive properties of manganese
    oxide prepared by anodic deposition," Journal of Power Sources, 135
    (2004) 344.
    23. C. C. Hu and C. C. Wang, "Nanostructures and capacitive characteristics
    of hydrous manganese oxide prepared by electrochemical deposition,"
    Journal of the Electrochemical Society, 150 (2003) 1079.
    24. J. K. Chang and W. T. Tsai, "Material characterization and electrochemical
    performance of hydrous manganese oxide electrodes for use inelectrochemical pseudocapacitors," Journal of the Electrochemical Society,
    150 (2003) 1333.
    25. 粘喬琳, 定電流陽極沉積錳氧化物之電極製備及其特性研究, 國立成
    功大學材料科學及工程學系碩士論文, (2006).
    26. K. R. Prasad and N. Miura, "Potentiodynamically deposited
    nanostructured manganese dioxide as electrode material for
    electrochemical redox supercapacitors", J. Power Sources 135 (2004)
    354–360
    27. S. Wen, J.-W. Lee, I.-H. Yeo, J. Park and S.-I. Mho, "The role of cations of
    the electrolyte for the pseudocapacitive behavior of metal oxide electrodes,
    MnO2 and RuO2," Electrochimica Acta, 50 (2004) 849.
    28. M. Pourbaix, Atlas of electrochemical equilibrium in aqueous solutions,
    National Association of Corrosion Engineers, (1966).
    29. 朱聖凱, 水熱電化學法陽極沉積錳氧化物之電極製備及其特性之研究,
    國立成功大學材料科學及工程學系碩士論文, (2004).
    30. J. K. Chang and W. T. Tsai, "Effects of temperature and concentration on
    the structure and specific capacitance of manganese oxide deposited in
    manganese acetate solution", J. Appl. Electrochem., 34 (2004) 953.
    31. C.C. Hu and T. W. Tsou, "The optimization of specific capacitance of
    amorphous manganese oxide for electrochemical supercapacitors using
    experimental strategies", J. Power Sources 115 (2003) 179.
    32. K. W. Nam and K. B. Kima, "Manganese Oxide Film Electrodes Prepared
    by Electrostatic Spray Deposition for Electrochemical Capacitors ", TheElectrochem. Soc. , 153 (1) (2006) A81-A88
    33. M. Wu, G. A. Snook, G. Z. Chen and D. J. Fray, "Redox deposition of
    manganese oxide on graphite for supercapacitors", Electrochemistry
    Communications 6 (2004) 499-504
    34. R. Kotz and M. Carlen, "Principles and applications of electrochemical
    capacitors," Electrochimica Acta, 45 (2000) 2483.
    35. 張仍奎, 超高電容器錳氧化物電極之電化學製備法、材料特性及擬電
    容行為, 國立成功大學材料科學及工程學系博士論文, (2005).
    36. B. E. Conway, "Electrochemical Supercapacitors – Scientific
    Fundamentals and Technology Applications", Kluwer Academic /Plenum,
    New York (1999)
    37. 黃孟娟, 張榮錡, "釕氧化物超高電容器材料特性簡介," 工業材料 182
    期, (2002) 122.
    38. 薛立人, "高性能電容器," 工業材料 166 期, (2000) 121
    39. 曾文男, "導電高分子於高儲能電容器上之應用," 工業材料 176 期,
    (2001) 145.
    40. S. Trasatti, "Physical electrochemistry of ceramic oxides," Electrochimica
    Acta, 36 (1991) 225.
    41. H. Kim, J. H. Kim, Y. H. Lee and K. B. Kim, "Synthesis and
    characterization of electrochemically prepared ruthenium oxide on carbon
    nanotube film substrate for supercapacitor applications," Journal of The
    Electrochemical Society, 152 (2005) A2170.
    42. 黃瑞雄, 顏溪成, " 漫談電化學," 科學發展359 期 (2002) 22.43. 王世育, 四氧化三鐵/碳材超高電容器之特性與機制探討, 國立台灣大
    學化學工程學研究所博士論文, (2004).
    44. V. Subramanian, H. Zhu and B. Wei, "Nanostructured MnO2:
    Hydrothermal synthesis and electrochemical properties as a supercapacitor
    electrode material", J. Power Sources 159 (2006) 361–364
    45. J. K. Chang and W. T. Tsai, "Microstructure and Pseudocapacitive
    Performance of Anodically Deposited Manganese Oxide with Various
    Heat-Treatments", J. Electrochem. Soc., 152 10 (2005) A2063-A2068
    46. N. Nagarajan, H. Humadi and I. Zhitomirsky, "Cathodic electrodeposition
    of MnOx films for electrochemical supercapacitors", Electrochimica Acta
    51 (2006) 3039–3045
    47. C. C. Hu and T. W. Tsou, "Ideal capacitive behavior of hydrous manganese
    oxide prepared by anodic deposition", Electrochem. Communications 4
    (2002) 105–109
    48. E. Machefaux, T. Brousse, D. B′elanger and D. Guyomard,
    "Supercapacitor behavior of new substituted manganese dioxides", J.
    Power Sources 165 (2007) 651–655
    49. R. N. Reddy and R. G. Reddy, "Sol–gel MnO2 as an electrode material for
    electrochemical capacitors", J. Power Sources 124 (2003) 330–337
    50. V. Subramanian, H. Zhu and B. Wei, "Synthesis and electrochemical
    characterizations of amorphous manganese oxide and single walled carbon
    nanotube composites as supercapacitor electrode materials", Electrochem.
    Communications 8 (2006) 827–832
    51. S. Devaraj and N. Munichandraiah, "Electrochemical SupercapacitorStudies of Nanostructured α-MnO2 Synthesized by Microemulsion
    Method and the Effect of Annealing", Journal of The Electrochemical
    Society, 154 2 (2007) A80-A88
    52. 蕭宇尊, 動電位陽極沉積錳氧化物薄膜之製備及其擬電容行為, 國立
    成功大學材料科學及工程學系碩士論文, (2006).
    53. C. D. Wagner, J. F. Moulder, L. E. Davis and W. M. Riggs, "Handbook of
    X-ray photoelectron spectroscopy", Perking-Elmer Corporation. (1995)
    226.
    54. M. Chigane and M. Ishikawa, "Manganese oxide thin film preparation by
    potentiostatic electrolyses and electrochromism," J. Electrochem. Soc.,
    147 (6) (2000) 2246-2251.
    55. A. Era, Z. Takehara and S. Yoshizawa, "Discharge mechanism of
    manganese dioxide electrode", Electrochim. Acta, 12 (1967) 1199.

    下載圖示 校內:2009-02-13公開
    校外:2009-02-13公開
    QR CODE