| 研究生: |
戴志光 Tai, Chih-Kuang |
|---|---|
| 論文名稱: |
電化學原子力顯微鏡微影技術配合非等向性濕蝕刻之理論研究與實驗驗證 Theoretical Study and Experimental Verification on the Anisotropic Wet Etching for the Oxide Films Generated by EC-AFM |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 166 |
| 中文關鍵詞: | 非等向性濕蝕刻 、電化學原子力顯微鏡微影技術 |
| 外文關鍵詞: | EC-AFM Lithography, Anisotropic Wet Etching |
| 相關次數: | 點閱:105 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在分析掃描速度對電化學原子力顯微鏡所製作氧化線高度的影響以及在無攪拌下的非等向性濕蝕刻速率的探討。掃描速度對氧化線高度影響的方面,主要是探討氧化線高度、總氧化時間與掃描速度在電化學原子力顯微鏡氧化行為的關係。氧化線理論模型是以包含Cabrera-Mott靜態氧化理論做為基礎,並探討氧化線高度在不同掃描速度作用後的結果。至於無攪拌蝕刻部分,則是探討蝕刻液濃度、蝕刻溫度、總蝕刻時間與無攪拌下蝕刻速率的關係。蝕刻速率理論模型是以蝕刻離子的擴散行為與化學蝕刻反應機制為基礎,並分別探討蝕刻速率在蝕刻液濃度、蝕刻溫度、總蝕刻時間與有無攪拌等條件作用下的結果。接著分別針對兩個理論中影響氧化線高度與蝕刻速率的各個參數設計實驗,由實驗結果來歸納出各參數對於實驗結果的影響。
由實驗結果看來,相同直流電壓氧化的情況下,當掃描速度增加會使得氧化線的高度與寬度隨之減少,而且與理論結果較符合。無攪拌蝕刻部分,在20%KOH以及溫度50 的情況下,在初始蝕刻速率 與化學反應常數 時的蝕刻速率理論趨勢最符合實驗結果。當蝕刻液濃度與蝕刻溫度增加會使得蝕刻速率隨之增加。無攪拌的蝕刻速率隨時間的增加而遞減,但是攪拌的蝕刻速率幾乎變化不大,且維持在一範圍內。
由實驗與理論結果的比較,可得知掃描速度確實為影響氧化線尺寸的主要因素。無攪拌蝕刻速率的實驗結果也頗符合以擴散為基礎的理論。而且也證實經由攪拌的確能減少擴散對蝕刻速率的影響,不會有隨時間而遞減的現象。
Two main points of this study is to analyze how scanning velocity affects the height of oxide line fabricated by EC-AFM(Electrochemisty Atomic Force Microscope) oxidation. Another one is to analyze the anisotropic wet etching rate without stirring. We tries to find out the relation between oxide heights, total oxidation time and scanning velocity in EC-AFM oxidation. In this study, we derive the dynamic EC-AFM oxidation model basic on static EC-AFM oxidation which includes Cabrera-Mott oxidation theory and use it to discuss the height of oxide line under different scanning velocities from the EC-AFM oxidation behavior. We also tries to find out the relation between etchant concentration, etching temperature, total etching time and the anisotropic wet etching rate without stirring. In this study, the non-stirring etching rate model is basic on the diffusion of etchant ions and chemical reaction of etching. And use this model to discuss non-stirring etching rate under different etchant concentration, etching temperature and total etching time. Then we set up the experiments, and see how the experimental parameters affect the experimental results from the dynamic oxidation mechanism and anisotropic wet etch without stirring
For the same oxidation voltage the heights and widths of oxide line decrease when raising the scanning velocity. We also find out the error least under the highest scanning velocity. For wet etching without stirring the etching rate increase when raising etchant concentration or etching temperature. But the etching rate decreases accompany the etching time increasing.
Comparing the experimental and the theoretical results, it is concluded that scanning velocity does affect the size of oxide line from EC-AFM oxidation. The experimental results of non-stirring etching rate is quite fit the theory derive from diffusion.
1. G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, “ Surface Studies by Scanning Tunneling Microscope”, Phys. Rev. Lett., Vol.49, Issue 1, pp.57-61(1982).
2. G. Binning, H. Rohrer, and Ch. Gerber, “Atomic Force Microscope”, Vol.56, Issue 9, pp.930-933(1986).
3. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, “Modification of Hydogen-Passivated Silicon by a Scann- ing Tunneling Microscope Operating in Air”, Appl. Phy. Lett.,Vol.56, No.20, pp.2001-2003(1990).
4. E. S. Snow and P. M. Cambell, “Fabrication of Si Nanostructures wi- th an Atomic Force Microscope ”, Appl. Phy. Lett., Vol.64, No.15 , pp.2001-2003(1994).
5. A. E. Gordon, R. T. Fayfield, D. D. Litfin, and T. K. Higman, “Me - chanisms of Surface Anodization Produced by Scanning Probe Micro -scopes”, J. Vac. Sci. Technol. B, Vol.13, No.6, pp2805-2808(1995).
6. D. Stievenard, P. A. Fontaine, and E. Bubois, “Nanooxidation Using a Scanning Probe Microscope: An Analytical Model based on Field Induced Oxidation ”, Appl. Phy. Lett., Vol.70, No.24, pp. 3272-3274 (1997).
7. N.Cabrera and N.F. Mott, “Theory of the Oxidation of Metals”, Rep. Prog. Phys., Vol.12, pp.163-184(1948)
8. P. Avouris, T. Hertel, and R. Martel, “Atomic Force Microscope Tip -Induced Local Oxidation of Silicon:Kinetics, Mechanism, and nano -fabrication”, Appl. Phy. Lett., Vol.71, No.2, pp.285-287(1997).
9. L. Ley, T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, 1996,” Kinetics offield-induced oxidation of hydrogen-terminated Si (111) by means of a scanningforce microscope ”, J. Vac. Sci. Technol. B, vol.14, pp.2845.
10. J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, and H. Yokoyama, “Role of Space Charge in Scanned Probe Oxidation”, J. Appl. Phys., Vol.84, No.12, pp.6891-6900(1998).
11. F. Marchi, V. Bouchiat, H. Dallaporta, V. Safarov, D. Tonneau, and P. Doppelt, “Growth of Silicon Oxide on Hydrogenated Silicon during Lithography with an Atomic Force Microscope”, J. Vac. Sci. Technol. B, Vol.16, No.6, pp2952-2956(1998).
12. R. Garcia, J. Montserrat, and F. Perez-Murano, “Local Oxi -dation of Silicon Surfaces by Dynamic Force Microscopy:Nanofabrication and Water Bridge formation”, Appl. Phy. Lett., Vol.72, No.18, pp. 2295 - 2297 (1998).
13. Ricardo Garcia, J. Montserrat, and Heinrich Rohrer, “Pattering of Si- licon Surfaces with Noncontact Atomic Force Microscopy : Field - Induced Formation of Nanometer-Size Water Bridges”, J. Appl. Phys. Vol.86, No.4, pp.1898-1903(1999).
14. E. Dubois and J. Budendorff, “Kinetics of Scanned Probe Oxidation: Space-Charge Limited Growth”, J. Appl. Phys., Vol.87, No.11, pp. 8148-8154(2000).
15. M. Calleja and R. Garcia, “Nano-Oxidation of Silicon Surfaces by Noncontact Atomic Force Microscopy: Size Dependence on Voltage and Pulse Duration”, Appl. Phy. Lett., Vol.76, No.23, pp. 3427-3429 (2000).
16. M. Calleja, M. Tello, and R. Garcia, “ Size Determination of Field - Induced Water Menisci in Noncontact Atomic Force Microscopy”, J. Appl. Phys., Vol.92, No.9, pp.5539-5542(2002).
17. P.J. Holmes,”The Eletrochemistry of Semiconductors” pp. 329, Aca- demic Press, Ltd., Lodon(1962)
18. E. Bassous, ” Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon ” IEEE Trans. Electron Devices ED-25, pp. 1178 ,1978.
19. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotro- pic etching of crystalline silicon in alkaline solution-Part I Orienta- tion dependence and behavior of passivation layer”, J. Electrochem. Soc., Vol. 137, No. 11, pp. 3612-3626, (1990).
20. C. F. Quate and K. Wilder “Noncontact nanolithography using the atomoic force microscope”, J. Appl. Phys., Vol73, No.17, pp. 2527- 2529(1998).
21. P. Shewmon, Diffusion in Solids, 2nd ed., The Minerals, Metals & Materials Society, 1989.
22. B. Bhushan(Series Editor), Handbook of Micro/Nano Tribology , CRC press, 1995.
23. 原子力氧化術之氧化理論研究與實驗印證,林軒立,成功大學
機械所碩士論文,2004
24. H.R. Robbins and B. Schwartz, “Chemical Etching of Silicon-II. The system HF, HNO3, H2O, and HC2C3O2”, J. Electrochem, Soc. , Vol. 107, No. 2, pp. 108-111, (1960).
25. B. Schwartz and H. R. Robbins, “Chemical Etching of Silicon-III. A Temperature Study in the Acid System, “ J. Electrochem. Soc., Vol. 108, No. 4, pp. 365-372, (1961).
26. D. B. Lee, “Anisotropic Etching of Silicon “, J. of App. Phys. , Vol. 40, No. 11, pp. 4569-4574, (1969).
27. P. J. Hesketh, C. Ju, and S. Gowda, “Surface Free Energy Model of Silicon Anisotropic Etching”, J. Electrochem. Soc., Vol.140, No.4, pp. 1080-1084, (1993).
28. T. Akinwande, Lecture 13 --- Wet Etching, Massachusetts Institute of Technology ,Fall Term ,( 2003).
29. 吳浩青 李永舫 ,電化學動力學, Springer,( 1998).
30. K. E. Bean, “Anisotropic Etching of Silicon”, IEEE Trans. Electron Devices ED-25 1185(1978).
31. Cussler, E. L., Diffusion :Mass Transfer in Fluid Systems, Cambridge University Press,( 1997).
32. M. Elwenspoek, “ The Form of Etch Rate Minima in Wet Chemical Anisotropic Etching of Silicon”, Journal of Micromechanical and Microengineering, Vol. 6, pp. 405-409, (1996).
33. Marc J. Madou , Fundamentals of Microfabrication , 2nd Ed. , CRC Press,( 2002).
34. Jacb N. Israelachvili, Intermolecular and Surface Forces, 2nd edition, Academic Press, (1991).
35. Raymond Chang, EditionChemistry 7th , McGraw-Hill, (2000).
36. F. S.-S. Chien, W.-F. Hsieh, S. Gwo, A. E. Vladar and J. A. Dagata, “Silicon Nanostructures Fabricated by Scanning Probe Oxidation and Tetra-methyl Ammonium Hydroxide,” J. Appl. Phys., June 15,(2002).
37. Forest S.-S. Chien, C-L Wu, Y.-C. Chou, T. T. Chen, S. Gwo, and W. -F. Hsieh, “Nanomachining of (110)-oriented Silicon by Scanning Probe Lithography and Anisotropic Wet Etching,” Appl. Phys. Lett. 75(16), pp. 2429-2431, (1999).
38. Incropera Dewitt, Fundamentals of Heat and Mass Transfer, 4th , Ed. WILEY, ( 1997).
39. 李怡嚴(民72)大學物理學第三冊,東華書局印行。
40. 成功大學微機電所 微機電製程技術上課講義 李國賓教授
41. D. R. Wolters and A. T. A. Zegers-van Duynhoven, “Kinetics of Dry Oxidation of Silicon. I. Space-Charge-Limited Growth”, J. Appl. Phys., Vol.65, No.12, pp.5126-5133(1989).
42. W. Adamson, Physical Chemistry of Surface, 5th ed., John Wiley & Sons, Inc., (1990).
43. David J. Griffiths, Introduction to Electrodynamics, 3rd ed., Prentice Hall, (1999).
44. T. Baum, D. J. Schiffrin, “AFM Study of Surface Finish Improve- ment by Ultrasound in the Anisotropic Etching of Si<100> in KOH for Micromachining Applications”, J. Micromech. Microeng. No. 4, pp. 338-342, (1997).