| 研究生: |
陳啟賢 Chen, Qi-Xian |
|---|---|
| 論文名稱: |
仿生機械魚運動行為分析及動態系統之強健控制 Dynamic Analysis and Nonlinear Guidance Law Design of Biomimetic Fish Robots |
| 指導教授: |
陳永裕
Chen, Yung-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 仿生機械魚 、致動器等級設計 、回授線性化 、非線性的強健導引律 、擾動 |
| 外文關鍵詞: | nonlinear control law, fish robots, balance mechanism, link structure, disturbances |
| 相關次數: | 點閱:150 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文嘗試進行仿生機械魚的動態行為的分析及強健導引律設計。於此研究中,仿生機械魚的動態行為之魚體剛體動態方程式與致動器間之轉換關係在無任何近似下之解析型式可被推導出來。此仿生機械魚因有考慮組成致動器,如頭部平衡系統、魚身擺動關節,與尾鰭等組成架構對仿生機械魚游動時的影響,故設計仿生機械魚時即可直接進行致動器等級的導引律設計。此機械魚乃由以下三個致動器系統: 1. 魚身平衡系統 2. 魚體擺動四連桿機械結構 與3. 尾鰭的組成來達仿生機械魚剛體動態方程式於立體空間中位置及姿態的調整以達成期望軌跡的追蹤目的。藉由上述分析完成之非線性仿生機械魚運動模型,此論文進一步的開發出兩款導引律。此兩款仿生機械魚導引律分別藉由回授線性化的概念及強健控制的概念來設計。經模擬驗證,可發現以強健性之導引律於海洋環境擾動及仿生機械魚系統不確定性的影響下具備相當良好軌跡追蹤性能。
關鍵字 :仿生機械魚,致動器等級設計,回授線性化,非線性的強健導引律,擾動
There are two main contributions delivered in this thesis. Firstly, one well-formulated robot fish model which contains the nonlinear rigid body dynamics and models of actuators is analytically integrated without any approximations. This fish robot is built up by three basic parts: 1. a balance mechanism, 2. four links structure, and 3. a caudal fin. In front of the fish robot’s head, there is a balance mechanism used to control the rotations in pitch and roll directions of the controlled fish robot by moving two movable masses. A four links structure with two active joints and one passive joint is designed to vibrate the fish’s body. In the end of the proposed fish robot, a caudal fin which connects with the passive joint is developed to generate hydrodynamic thrust forces to propel the fish robot. Second, based on the well-formulated model, a nonlinear guidance law with a robustness property is developed for the proposed fish robot to precisely track predefined trajectories and mitigate the effects of modeling uncertainties and ocean environmental disturbances simultaneously.
Keywords: nonlinear control law, fish robots, balance mechanism, link structure, disturbances.
[1] J. M. Donley and K. A. Dickson, “Swimming kinematics of juvenile kawakawa tuna affinis) (Euthynnus Affinis) and chub mackerel (Scomber Japonnicus),” Journal of Experimental Biology, vol. 203, pp. 3103-3116, 2000.
[2] L. Wen, T. Wang, G. Wu, and J. H. Liang, “Quantitative thrust efficiency of a self-propulsive robotic fish: experimental method and hydrodynamic investigation,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 3, pp. 1027–1038, 2013.
[3] J. E. Colgate, K. M. Lynch, “Mechanics and control of swimming: a review,” IEEE Journal of Oceanic Engineering, vol. 29, no. 3, pp. 660-673, 2004.
[4] Anderson, J. M., Chhabra, N. K, “Maneuvering and stability performance of a robotic tuna,” Integrative and comparative biology, vol. 42, pp. 118-126, 2002.
[5] M. Nakashima and N. Ohgishi, “A study on the propulsive mechanism of a double jointed fish robot utilizing self-excitation control,” International Journal Japan Society of Mechanical Engineering, vol. 46, no. 3, pp. 982-990, 2003.
[6] H. S. Kim, B. R. Lee, T. Q. Vo, and Q. B. Trung, “A study on optimization of fish robot velocity using genetic algorithm,” in Proc. IEEE International Conference on Smart Manufacturing Application, Gyeonggi-do, Korea, pp. 441-446, 2008.
[7] P. Suebsaiprom and C. L. Lin, “Fish-tail modeling for fish robot,” in Proc. IEEE International Symposium on Computer, Consumer and Control, Taichung, Taiwan, pp. 548-551, 2012.
[8] Hyoung Seok Kim, ByungRyong Lee, and RakJin Kim, “A Study on the Motion Mechanism of Articulated Fish Robot”, International Conference on Mechatronics and Automation, Harbin, China, 2007.
[9] P. Suebsaiprom and C. L. Lin, “2-DOF barycenter mechanism for stabilization of fish-robots,” in Proc. IEEE International Conference on Industrial Electronics and Applications, Melbourne, Australia, pp. 1119-1122, 2013.
[10] C. A. Woolsey and N. E. Leonard, “Moving mass control for underwater vehicles,” in Proc. American Control Conference, Anchorage, pp. 2824-2829, 2002.
[11] T. Q. Vo, H. S. Kim, H. S. Cho, D. N. Dang, and B. R. Lee, “A study on optimization of fish robot maximum velocity using the combination of genetic-hill climbing algorithm,” in Proc. ICROS-SICE International Joint Conference, Fukuoka, Japan, pp. 2280-2285, 2009.
[12] T. Q. Vo, H. S. Kim, and B. R. Lee, “Smooth gait optimization of a fish robot using the genetic-hill climbing algorithm,” Journal of Robotic, vol. 30 no. 2, pp. 257-278, 2012.
[13] P. Suebsaiprom, C. L. Lin, and S. Saimek, “Fish robot modeling and simulation: fish-tail and rigid-body motion,” International Journal of Advancements in Computing Technology, vol. 4, no. 8, pp. 105-114, 2012.
[14] J. Yu and L. Wang, “Parameter optimization of simplified propulsive model for biomimetic robot fish,” in Proc. IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 3306-3311, 2005.
[15] S. B. Niku, Introduction to Robotics Analysis, System, Application. Practice Hall, Upper Saddle River, New Jersey, 2001.
[16] L. Z. Liu, J. Z. Yu, and L. Wang L, “Dynamic modeling of three-dimensional swimming for biomimetic robotic fish,” in Proc. IEEE International Conference Intelligent Robots and Systems, Beijing, China, pp. 3916-3921, 2006.
[17] C. Zhou, Z. Q. Cao, S. Wang, and M. Tan, “The posture control and 3-D locomotion implementation of biomimetic robot fish,” in Proc. IEEE International Conference Intelligent Robots and Systems, Beijing, China, pp. 5406-5411, 2006.
[18] T. Q. Vo, H. S. Kim, and B. R. Lee “A study on turning motion control of a 3-joint robot using sliding mode based controller,” in Proc. IEEE International Conference on Control, Automation and Systems, pp. 1556-1561, 2010.
[19] J. X. Xu and X. L. Niu, “Gait generation and sliding mode control design for anguilliform biomimetic robotic fish,” in Proc. IEEE International Conference on Industrial Electronics Society, pp. 3947-3952, 2011.
[20] J. X. Xu, X. L. Niu, and Z. Q. Guo, “Sliding mode control design for a carangiform robotic fish,” in Proc. IEEE workshop on Variable Structure Systems, pp. 308-313, 2011.
[21] P. Suebsaiprom, C. L. Lin, “Maneuverability Modeling and Trajectory Tracking for Fish Robot,” Journal of Control Engineering Practice, vol. 45, pp. 22-36, 2015.
[22] J. Z. Yu, M. Tan, S. Wang, and E. Chen, “Development of a biomimetic robotic fish and its control algorithm,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 34, no. 4, pp. 1798-1810, 2004.
[23] Park, Y. J, Jeong, U, Lee, J., Kwon, S. R., Kim, H. Y. and Cho, K. J, “Kinematic Condition for Maximizing the Thrust of a Robotic Fish Using a Compliant Caudal Fin” IEEE Transactions on robotics, vol. 28, no.6, 2012.
[24] Yung-Yue, Chen, “Robust terminal guidance law design for missiles against maneuvering targets” Aerospace Science and Technology, vol. 54, pp. 198-207, 2016
[25] Yung-Yue Chen, and Chun-Liang Lin, “Nonlinear Fuzzy Guidance Law With Saturation of Actuators Against Maneuvering Targets” IEEE Transactions on control system technology, vol. 10, no.6, 2002
校內:2022-07-28公開