簡易檢索 / 詳目顯示

研究生: 陳啟賢
Chen, Qi-Xian
論文名稱: 仿生機械魚運動行為分析及動態系統之強健控制
Dynamic Analysis and Nonlinear Guidance Law Design of Biomimetic Fish Robots
指導教授: 陳永裕
Chen, Yung-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 107
中文關鍵詞: 仿生機械魚致動器等級設計回授線性化非線性的強健導引律擾動
外文關鍵詞: nonlinear control law, fish robots, balance mechanism, link structure, disturbances
相關次數: 點閱:150下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文嘗試進行仿生機械魚的動態行為的分析及強健導引律設計。於此研究中,仿生機械魚的動態行為之魚體剛體動態方程式與致動器間之轉換關係在無任何近似下之解析型式可被推導出來。此仿生機械魚因有考慮組成致動器,如頭部平衡系統、魚身擺動關節,與尾鰭等組成架構對仿生機械魚游動時的影響,故設計仿生機械魚時即可直接進行致動器等級的導引律設計。此機械魚乃由以下三個致動器系統: 1. 魚身平衡系統 2. 魚體擺動四連桿機械結構 與3. 尾鰭的組成來達仿生機械魚剛體動態方程式於立體空間中位置及姿態的調整以達成期望軌跡的追蹤目的。藉由上述分析完成之非線性仿生機械魚運動模型,此論文進一步的開發出兩款導引律。此兩款仿生機械魚導引律分別藉由回授線性化的概念及強健控制的概念來設計。經模擬驗證,可發現以強健性之導引律於海洋環境擾動及仿生機械魚系統不確定性的影響下具備相當良好軌跡追蹤性能。

    關鍵字 :仿生機械魚,致動器等級設計,回授線性化,非線性的強健導引律,擾動

    There are two main contributions delivered in this thesis. Firstly, one well-formulated robot fish model which contains the nonlinear rigid body dynamics and models of actuators is analytically integrated without any approximations. This fish robot is built up by three basic parts: 1. a balance mechanism, 2. four links structure, and 3. a caudal fin. In front of the fish robot’s head, there is a balance mechanism used to control the rotations in pitch and roll directions of the controlled fish robot by moving two movable masses. A four links structure with two active joints and one passive joint is designed to vibrate the fish’s body. In the end of the proposed fish robot, a caudal fin which connects with the passive joint is developed to generate hydrodynamic thrust forces to propel the fish robot. Second, based on the well-formulated model, a nonlinear guidance law with a robustness property is developed for the proposed fish robot to precisely track predefined trajectories and mitigate the effects of modeling uncertainties and ocean environmental disturbances simultaneously.

    Keywords: nonlinear control law, fish robots, balance mechanism, link structure, disturbances.

    中文摘要 I Abstract II Acknowledgement III List of Parameters IV List of Tables VII List of Figures VIII Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Literature Review 1 1.3 Research method 3 Chapter 2 Dynamics of Robot Fishes 4 2.1 Dynamics of fish robots 5 2.2 Model of the balance mechanism 10 2.3 Model of the thrust system 13 Chapter 3 Nonlinear Guidance Law Design 16 3.1 Feedback Linearization Guidance Design 16 3.2 Nonlinear Robust Guidance Design 20 3.2.1 Nonlinear Robust Guidance Design of the controlled fish Robot 23 Chapter 4 Simulation Results 28 4.1 Definition of the parameters of balance mechanism and thrust system 28 4.2 Definition of the fish robot and disturbances parameters 31 4.3 Simulation results of two proposed nonlinear control law 33 4.3.1 Simulation results for Stability test of uncontrolled fish robot 34 4.3.2 Simulation results for case 1 ( -shape trajectory) 37 4.3.3 Simulation results for case 2 (Curve trajectory) 52 4.3.4 Simulation results for case 3 (Circular trajectory) 71 4.4 Comparisons of simulation results for two proposed control laws and the effect of different attenuation level 89 4.5 Simulation results for Nonlinear Robust Control Law on different initial Position with respect to three testing cases 93 Chapter 5 Conclusion 97 References 98

    [1] J. M. Donley and K. A. Dickson, “Swimming kinematics of juvenile kawakawa tuna affinis) (Euthynnus Affinis) and chub mackerel (Scomber Japonnicus),” Journal of Experimental Biology, vol. 203, pp. 3103-3116, 2000.
    [2] L. Wen, T. Wang, G. Wu, and J. H. Liang, “Quantitative thrust efficiency of a self-propulsive robotic fish: experimental method and hydrodynamic investigation,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 3, pp. 1027–1038, 2013.
    [3] J. E. Colgate, K. M. Lynch, “Mechanics and control of swimming: a review,” IEEE Journal of Oceanic Engineering, vol. 29, no. 3, pp. 660-673, 2004.
    [4] Anderson, J. M., Chhabra, N. K, “Maneuvering and stability performance of a robotic tuna,” Integrative and comparative biology, vol. 42, pp. 118-126, 2002.
    [5] M. Nakashima and N. Ohgishi, “A study on the propulsive mechanism of a double jointed fish robot utilizing self-excitation control,” International Journal Japan Society of Mechanical Engineering, vol. 46, no. 3, pp. 982-990, 2003.
    [6] H. S. Kim, B. R. Lee, T. Q. Vo, and Q. B. Trung, “A study on optimization of fish robot velocity using genetic algorithm,” in Proc. IEEE International Conference on Smart Manufacturing Application, Gyeonggi-do, Korea, pp. 441-446, 2008.
    [7] P. Suebsaiprom and C. L. Lin, “Fish-tail modeling for fish robot,” in Proc. IEEE International Symposium on Computer, Consumer and Control, Taichung, Taiwan, pp. 548-551, 2012.
    [8] Hyoung Seok Kim, ByungRyong Lee, and RakJin Kim, “A Study on the Motion Mechanism of Articulated Fish Robot”, International Conference on Mechatronics and Automation, Harbin, China, 2007.
    [9] P. Suebsaiprom and C. L. Lin, “2-DOF barycenter mechanism for stabilization of fish-robots,” in Proc. IEEE International Conference on Industrial Electronics and Applications, Melbourne, Australia, pp. 1119-1122, 2013.
    [10] C. A. Woolsey and N. E. Leonard, “Moving mass control for underwater vehicles,” in Proc. American Control Conference, Anchorage, pp. 2824-2829, 2002.
    [11] T. Q. Vo, H. S. Kim, H. S. Cho, D. N. Dang, and B. R. Lee, “A study on optimization of fish robot maximum velocity using the combination of genetic-hill climbing algorithm,” in Proc. ICROS-SICE International Joint Conference, Fukuoka, Japan, pp. 2280-2285, 2009.
    [12] T. Q. Vo, H. S. Kim, and B. R. Lee, “Smooth gait optimization of a fish robot using the genetic-hill climbing algorithm,” Journal of Robotic, vol. 30 no. 2, pp. 257-278, 2012.
    [13] P. Suebsaiprom, C. L. Lin, and S. Saimek, “Fish robot modeling and simulation: fish-tail and rigid-body motion,” International Journal of Advancements in Computing Technology, vol. 4, no. 8, pp. 105-114, 2012.
    [14] J. Yu and L. Wang, “Parameter optimization of simplified propulsive model for biomimetic robot fish,” in Proc. IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 3306-3311, 2005.
    [15] S. B. Niku, Introduction to Robotics Analysis, System, Application. Practice Hall, Upper Saddle River, New Jersey, 2001.
    [16] L. Z. Liu, J. Z. Yu, and L. Wang L, “Dynamic modeling of three-dimensional swimming for biomimetic robotic fish,” in Proc. IEEE International Conference Intelligent Robots and Systems, Beijing, China, pp. 3916-3921, 2006.
    [17] C. Zhou, Z. Q. Cao, S. Wang, and M. Tan, “The posture control and 3-D locomotion implementation of biomimetic robot fish,” in Proc. IEEE International Conference Intelligent Robots and Systems, Beijing, China, pp. 5406-5411, 2006.
    [18] T. Q. Vo, H. S. Kim, and B. R. Lee “A study on turning motion control of a 3-joint robot using sliding mode based controller,” in Proc. IEEE International Conference on Control, Automation and Systems, pp. 1556-1561, 2010.
    [19] J. X. Xu and X. L. Niu, “Gait generation and sliding mode control design for anguilliform biomimetic robotic fish,” in Proc. IEEE International Conference on Industrial Electronics Society, pp. 3947-3952, 2011.
    [20] J. X. Xu, X. L. Niu, and Z. Q. Guo, “Sliding mode control design for a carangiform robotic fish,” in Proc. IEEE workshop on Variable Structure Systems, pp. 308-313, 2011.
    [21] P. Suebsaiprom, C. L. Lin, “Maneuverability Modeling and Trajectory Tracking for Fish Robot,” Journal of Control Engineering Practice, vol. 45, pp. 22-36, 2015.
    [22] J. Z. Yu, M. Tan, S. Wang, and E. Chen, “Development of a biomimetic robotic fish and its control algorithm,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 34, no. 4, pp. 1798-1810, 2004.
    [23] Park, Y. J, Jeong, U, Lee, J., Kwon, S. R., Kim, H. Y. and Cho, K. J, “Kinematic Condition for Maximizing the Thrust of a Robotic Fish Using a Compliant Caudal Fin” IEEE Transactions on robotics, vol. 28, no.6, 2012.
    [24] Yung-Yue, Chen, “Robust terminal guidance law design for missiles against maneuvering targets” Aerospace Science and Technology, vol. 54, pp. 198-207, 2016
    [25] Yung-Yue Chen, and Chun-Liang Lin, “Nonlinear Fuzzy Guidance Law With Saturation of Actuators Against Maneuvering Targets” IEEE Transactions on control system technology, vol. 10, no.6, 2002

    無法下載圖示 校內:2022-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE