簡易檢索 / 詳目顯示

研究生: 汪玉銘
Uang, Yuh-Ming
論文名稱: 定電流聚合導電性高分子法製備葡萄糖生物感測器之研究
Fabrication of Glucose Biosensor with Conducting Polymer Generated by Galvanostatic Electropolymerization
指導教授: 周澤川
Chou, Tse-Chuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 118
中文關鍵詞: 穩定化分子篩靈敏度定電流準則
外文關鍵詞: stabilized, molecular sieve, sensitivity, criteria, galvanostatic
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對具導電性聚仳咯(Ppy)葡萄糖生物感測器進行研究,此感測器之製備程序係在定電流情況下,以白金工作電極置入含葡萄糖氧化酵素(GODx)及仳咯單體之氯化鉀溶液中進行電聚合固定化反應。
    對不同條件下所製備生物感測器的表現,本研究均予檢測並相互比較,進而獲得定電流法製備聚仳咯(Ppy)葡萄糖生物感測器的準則。本文共探討了五個影響Ppy/GODx生物感測器性質的製備因素,即;單體濃度、施加電流密度、生成膜厚度、酵素濃度、系統pH值。根據實驗結果得知:單體濃度太高或施加電流密度太小及生成膜的厚度太厚,這些條件導致感測器的靈敏度很差,不適合製備Ppy/GODx生物感測器,同時,就靈敏度而言;酵素濃度於0.5mg/mL與製備系統於微酸性及中性情況下有最佳化的情況出現。除了靈敏度以外;決定製備定電流GODx/Ppy生物感測器之最佳化條件還得考慮感測器的選擇性,而本文發現以聚仳咯作為生物感測器之酵素固定化基材時,生物感測膜之厚度只要超過50 mC/cm2
    ,便具有優異分子篩特性,可排除維生素C所引起的干擾問題,增加GODx/Ppy生物感測器的選擇性。實驗結果也顯示此種最佳化生物感測器在感測葡萄糖時,所得信號在0~10 mM範圍具有良好的線性關係,此線性關係亦符合理論之推導。同時;此最佳化生物感測器的酵素動力學參數,KM’及Imax可藉Lineweaver-Burk作圖法分別求出。針對定電位法所製備之GODx/Ppy生物感測器感測前之穩定化耗時作業問題,經研究後,發現定電流製備法可顯著縮短GODx/Ppy生物感測器的穩定化作業時間。最後,此最佳化生物感測器經試驗後,約具2週的長時安定性。
    本文之貢獻在於:(1)建立適當條件的設計準則,製備定電流法GODx/Ppy葡萄糖生物感測器,(2)成功地以光學顯微鏡觀察到微米級固定化酵素在電極表面上之分佈情況,(3)在定電流聚合時,藉著應答電位之上升作用,提早將生物膜中之聚仳咯氧化而去其活性,如此,定電流法所製備之酵素電極可有效地縮短感測前之穩定化時間。

    The polypyrrole (Ppy) glucose biosensor fabricated by galvanostatic electropolymerization of pyrrole monomer in the presence of glucose oxidase (GODx) in a neutral saline solution with a platinum electrode is reported.
    The performances of the biosensors prepared under various conditions were examined and compared with each other, thus the criteria for designing the galvanostatic GODx/Ppy glucose biosensor were obtained. There were five fabricating parameters to be investigated how the effects of them on the sensing properties of the resulted glucose biosensors were. Based upon the experimental results, higher monomer concentration、lower applied current density and higher film thickness always resulted in a poor sensitivity to glucose and were unsuitable to fabricate the GODx/Ppy biosensor. Enzyme-loading amount of 0.5 mg/mL and the fabricating system with slightly weak acidic or neutral condition would lead an optimal sensitivity to the resulted sensors. Besides the sensitivity, the selectivity should also be considered for determining the optimal conditions for fabricating the glucose biosensor. The results confirmed that the polypyrrole-based biofilm with thickness higher than 50 mC/cm2 could perform the excellent size-exclusion effect to suppress the interference aroused by the model electroactive species, ascorbic acid, and enhance the selectivity of the resulted sensor. The linear range for sensing glucose of this optimized biosensor was from zero to 10 mM and in agreement with the theoretical derivative. Meanwhile, the kinetic parameters of the resulted biosensor, KM’ and Imax could be readily derived from the Lineweaver-Burk plot, respectively. As regards the time-consuming problem for stabilizing the potentiostatic GODx/Ppy bioelectrode before sensing glucose, this galvanostatic method has been proved to effectively improve this demerit. Finally, the long-term stability of this optimized glucose biosensor was also reported to be about 2 weeks.
    The contributions of the present work included that establishing the criteria for designing a galvanostatically fabricated GODx/Ppy biosensor, successfully observing the spatial distribution of the immobilized commercial enzyme with m-level by a convenient optical microscope, and significantly shorting the time for stabilizing this sensor with an increasing potential response, which could previously deactivate the electroactivity of Ppy during the immobilization process before sensing glucose.

    1. 緒論 ………………………………… 1 1-1 生物感測器 …………………… 4 1-1-1生物感測器之定義 …………… 4 1-1-2生物感測器基本構造與組成 ………… 5 1-1-3 生物感測器之優點 ……………… 7 1-1-4 生物感測器之發展史 ……………… 7 1-2 電化傳感器 ………………………… 12 1-2-1 簡介 ………………………… 12 1-2-2 電流式傳感器 …………………… 12 1-2-3 電位式傳感器 …………………… 13 1-2-4 電導度式傳感器 ………………… 14 1-3具感測性之生物元素 - 酵素 ……………… 14 1-4酵素固定化方法 ……………………… 20 1-4-1 簡介 ……………………… 20 1-4-2 吸附固定化法 …………………… 21 1-4-3 膠囊固定化法 …………………… 21 1-4-4 圈入固定化法 …………………… 21 1-4-5 鍵結固定化法 …………………… 22 1-4-6交連固定化法 …………………… 23 1-5電流式酵素生物感測之機制及原理 … 23 1-5-1 酵素催化反應動力學 ……… 23 1-5-2 電流式酵素生物感測機制 ……… 26 1-5-3 電流式酵素生物感測原理 ……… 30 1-6電化學聚合固定法製備電流式葡萄糖生物感測器 39 1-6-1 簡介 ……………………… 39 1-6-2 電聚合酵素固定法 ………… 42 1-6-3 電聚合導電性高分子酵素法 …… 43 1-6-4 研究動機 ………………………… 49 1-6-5 研究目的 ………………………… 50 2. 實驗 ……………………………………… 51 2-1 藥品器材與儀器設備 ………………… 51 2-2 設備與裝置 ……………………… 53 2-3 酵素電級之製備 …………… 55 2-3-1 工作電及前處理 ………………… 55 2-3-2 電聚合製備酵素電極 ……………… 55 2-3-3 葡萄糖感測及生物感測膜表面構形 … 56 3. 結果與討論 ……………………… 57 3-1 葡萄糖氧化酵素(GODx)對仳咯(Pyrrole) 電聚合的影響 …………………… 57 3-2 GODx/Ppy生物感測器定電流 製備條件準則評估 ……………… 58 3-2-1 單體濃度對感測器靈敏度的影響 …… 60 3-2-2 施加電流密度對感測器靈敏度的影響… 61 3-2-3 導電性高分子膜厚度對感測器 靈敏度的影響 …………………… 62 3-2-4 酵素濃度對感測器靈敏度的影響 ……… 62 3-2-5 電聚合系統pH值對感測器靈敏度的影響 63 3-3 生物感測器選擇性估 ……………… 65 3-4 生物感測器長時安定性探討 …………… 65 3-5 生物感測器感測特性評估及 動力學參數探討 …………………… 66 4.總結論與未來工作 …………………… 97 參考文獻 ………………… 100 附錄 ……………………… 110 自述 ………………………… 115

    1.許世明, ”世界生技產業發展概況”, 生物醫學報導, Jan.~Feb., No.17, 2003.
    2.陳建源, ”3.生物技術”, 國科會生物學發展處學門規劃, 1984.
    3.Clark L. C. Jr. & Lyons C., “Electrode system for continuous monitoring in cardiovascular surgery”, Ann. NY Acad. Sci., 148 133-135, 1962.
    4.Richard F. Taylor & Jerome S. Schultz, Handbook of Chemical and Biological Sensors, p5.
    5.Richard F. Taylor & Jerome S. Schultz, Handbook of Chemical and Biological Sensors, p8.
    6.Guibault C. and Montalvo, “A new specific enzyme electrode”, J. Am. Chem. Soc., 91, 2164-2165, 1969.
    7.Dacies C., ”Ethanol oxidation by an Acetobacterxylinium microbial electrode”, Ann. Microbiol., 175-186, 1975.
    8.Janata J., “An immunoelectorde”, J. Am. Chem. Soc., 97, 2194-2196, 1975.
    9.Aizawa M., Morioka A., Matsuoka H., Suzuki S., Nagamura Y., Shinohara R. and Ishiguro I., ”An enzyme immunosensor for IgG”, J. Solid-phase Biochem., 1, 319-328,.1976.
    10.Schulty J. S., Mansouri S. and Goldstein I. J., ”Affinity glucose sensor”, Diabetes Care, 5, 245-253,1982
    11.Carter F. L., “Molecular level fabrication techniques and molecular electronic devices”, J. Vac. Sci. Technol., B1, 959-968, 1983
    12.Belli S. L. and Rechnitz G. A., ”Proto type potentiometric biosensor using intact chemoreceptor structures”, Anal. Lett., 19, 403-416, 1986
    13.Taylor R. F., Marenchic I. G. and Cook E. J., “Receptor-based biosensors US Patent, 5001048, 1987.
    14.Heller A., ”Electrical wiring of redox enzymes”, Accounts Chem. Res. 23, 1280034, 1990.
    15.Bissell R. A., Cordova E., Kaifer A. E. and Stoddart J. F., “A chemically and electrochemically switchable molecular shuttle, Nature, 369, 133-137, 1994.
    16.Bard A. J. and Faulkner I. R., ”Electrochemical Methods Fundaments and applications”, Wiley, New York, 1980.
    17.Frieder Scheller and Florian Achubert, Biosensors, Elsevier, Amsterdam-London-New York-Tokyo, p85, 1992.
    18.H. J. Hecht, and D. J. Schomburg, “The 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme”, Biosenors and Bioelectronics, 8, 197,1993.
    19.Dai Guoliang, Li Jinru, and Jiang Long, “Conformation change of glucose oxidase at the water-air interface”, Colloids and Surfaces B: Biointerfaces, 13, 105, 1999.
    20.Du Yu-Kou, An Jing-Yi, Tang Ji’an, Li Te, and Jiang Long, “A study of the interaction between glycolipids of different hydrophobicities and glucose oxidase by a monolayer technique”, Colloids and surfaces B: Biointerfaces, 7, 129, 1996.
    21.Gamati S., Luong J. H. T. and Mulchandani A., ”A microbial biosensor for trimethyamine using Pseudomonas aminovirans cells”, Biosens. & Bioelectron., 6, 125-131, 1991.
    22.Jones T. P. and Porter M. D., ”Optical pH sensor based on the chemical modification of a porous polymer”, Anal. Chem., 60, 404-406, 1988.
    23.Zhujun Z. and Seitz W. R., “Optical sensor for oxygen based on immobilized hemoglobin”, Anal. Chem., 58, 220-222, 1986.
    24.Josefina Parellada, Arantzazu Narvaez, Elena Dominguez and Ioanis Katakis, ”A new type of hydrophilic carbon paste electrodes for biosensor manufacturing: binder paste electrodes”, Biosens. & Bioelectronics, Vol. 12. No. 4, 267-275, 1997.
    25.Quilbault G. G. and Montalvo J. G. Jr., “A area-specific enzyme electrode”, J. Am. Chem. Soc., 91 2164-2165, 1969.
    26.Subrayal. M. Reddy and Pankaj Vadgama, “Entrpment of GODx in non porous PVC”, Analytica. Chimica Acta, 461, 57-64, 2002.
    27.Rajesb Vaidya and Entisam Wilkins, “Effect of interference of amperometric glucose biosensors with cellulose acetate membrane”, Electroanalysis, 6, 677-682, 1994.
    28.Li, J., Chia, L.S., Goh, N.K., Tan, S.N., “Renewable silica sol-gel derived composite based glucose biosensor”, J. Electroanal. Chem., Vol. 460, 234-241, 1999.
    29.Nicola C. Foulds and Christopher R. Lowe, J. Chem. Soc. Faraday Trans., 1, 82, 1259, 1986.
    30.M. Umaňa and J. Waller, Anal. Chem., 58, 2979, 1986.
    31.Cabral J. M. S. and Kennedy J. F., “Covalent and coordination immobilization of proteins” Protein Immobilization: Research, Developments and Applications, ed R. F. Taylor (New York; Dekker), 73-183, 1991.
    32.Taylor R. F., “Development and applications of antibody- and receptor-based biosensors Bioinstrumentation: Research, Developments and Applications, ed D. L. Wise (Boston, MA; Butterworths, 355-412.
    33.Tamiya E., Siura Y., Akiyama A. and Karube I., ”Ultramicro-H2O2 electrode for fabrication of the in vivo biosensor. Ann. NY Acad. Sci., 613, 396-400, 1990.
    34.Surridge N. A., Debold E. R., Chang J. and Neudeck G. W., ” Electron-transport rates in an enzyme electrode for glucose” Diagnostic Biosensors Polymers ed A. M. Usmani and N. Akmal, 47-70.
    35.Richard F. Taylor & Jerome S. Schultz, Handbook of Chemical and Biological Sensors, p128.
    36.Racine P. and Mindt W., ”On the role of substrate diffusion in enzyme electrodes”, Experentia Suppl. 18, 525-543, 1971.
    37.謝淑珠,”糖尿病診斷”, 中華民國醫事檢驗學會學術研討會, 1998.
    38.Gough, D. A., Lucisano and Tse, P. S. H., Anal. Chemistry, 57, 2351, 1985.
    39.Enfors, S.-O, Application Biochemistry Biotechnology, 7, 113, 1982.
    40.Schller F., Schubert F., Pfeiffer D. and Renneberg R., Enzyme Eng. 8, 240, 1987.
    41.Abel P., Muller A. and Fischer U., Biomed. Biochim. Acta , 43 , 577, 1984.
    42.Guibault G. G. and Lubrano G., Anal. Chim. Acta, 64, 439, 1973.
    43.Koyama M., Satoh Y., Aziwa M. and Suzki S., Anal. Chim. Acta, 116, 307, 1980.
    44.Mascini M. and Palleschi G., Anal. Letter, 16, 1053,1983.
    45.Lobel E. and Rishpon J., Anal. Chem., 53, 51, 1981.
    46.Palleschi G., Rahni M. A. N., Lubrano G. J., Ngeh-Ngwainbi and Guibault G. G., Anal. Biochem., 159, 114, 1986.
    47.Ikeda T., Hamada H., Miki K. and Senda M., Agric. Biol. Chem., 49, 154, 1985.
    48.Geppert, G. and Asperger, L., Bioelectrochem. Bioenergy, 17, 399, 1987.
    49.Cardosi M. F. and Turner A. P. F., ”The realization of electron transfer from biological molecules to electrodes” in A. P. F. Turner, I. Karube and G. S. Wilson (eds), Biosensors:Fundments and Applications, Oxford University Press, Oxford, Chap. 15, 257-275.
    50.Albery W. J. and Cranson D. H., ”Amperometric enzyme electrodes: theory and experiment” in A. P. F. Turner, I. Karube and G. S. Wilson (eds), Biosensors:Fundments and Applications, Oxford University Press, Oxford, Chap. 12, 180-210.
    51.Barlett P. N. and Birkin P. R., ”The application of conducting polymers in Biosensors”, Synthetic Metals, 61, 15-21, 1993.
    52.Gerard Bidan, Sensors & Actuators B, 6, 45, 1992.
    53.Bartlett P. N. and Cooper J. M., J. Electroanal. Chem., 362, 1, 1993.
    54.Cosnier S., Biosensors & Bioelectronics, 14, 443, 1999.
    55.Fortier G., Brassard E. and Bélanger D., Biosensors & Bioelectronics, 5, 473, 1990.
    56.Judith Rishpon and Shimshon Gottesfeld, Biosensors & Bioelectronics, 6, 143, 1991.
    57.Mikito Yasuzawa and Akira Kunugi, Electrochemistry communications, 1999, 1, 459.
    58.Nicholas F. Almeida, Eric J. Beckman and Mohammad M. Ataai, Biotechnology and Bioengineering, 42, 1037, 1993.
    59.Kojima K., Nasu H., Shimomura M. and Miyauchi S., Synthetic Metals, 71, 2245, 1995.
    60.Trojanowicz M., Geschke O., Krawczyňski T. vel Krawczyk and Cammann K., Sensors & Actuators B, 28, 191, 1995.
    61.Juan-C. Vidal, Esperanza Garcia and Juan-R. Castillo, Biosensors & Bioelectronics, 13, 371, 1998.
    62.Dumont and G. Fortier, Biotechnology and Bioengineering, 49, 544, 1996.
    63.Min-Chol Shin and Hak-Sung Kim, Biosensors & Bioelectronics, 11,1/2, 161, 1996.
    64.Shin M.C., Yoon H.C. and Kim H.-S., Biosensors and Bioelectronics, 12, 5, 1997.
    65.Schuhmann W., Biosensors & Bioelectronics, 10, 181, 1995.
    66.Juan C. Vidal, Silvia Mndez and Juan R. Castillo, Analytica Chimica Aceta, 385, 203, 1999.
    67.Yoshio Kajiya, Hiroko Sugai, Chiaki Iwakura, and Hiroshi Yoneyama, Anal. Chem., 63, 49, 1991.
    68.Garjonyte, Rasa; Malinauskas and Alberts, Sensors and Actuators B,, 63, 122, 2000.
    69.Cooper J. C. and Hall E. A. H., “Electrochemical response of an enzyme-loaded polyaniline”, Biosensor and Bioelectronics, 7, 473-485, 1992.
    70.Kumaran Ramanathan, S. Annapoorni, B. D. Malhotra, “ Application of polyaniline asa a glucose biosensor”, Sensor and Acuators B, 21, 165-169, 1994.
    71.Shaolin Mu, Huaiguo Xuo, “Bioelectrochemical characteristics of glucose oxidase immobilized in a polyaniline film”, Sensor and Actuators B, 31, 155-160, 1996.
    72.M. Lemaire, R. Garreau, J. Roncali,, D. Delabouglise, H. Korri Youssofi and F. Garnier, “Design of polythiophene containing oxyalky substituents”, New J. Chem., 13, 863, 1989.
    73.Panddy P. C., J. Chem. Soc. Faraday Trans., 1, 84, 2259, 1988.
    74.陳男銘, ”聚苯氨修飾高分子固態電解質氯氣感測器之研究化學感測器”,成功大學化工碩士論文, 10-12 , 1996.
    75.Kaplin, David A. & Qutubuddin, Syed, ”Electrochemically synthesized polypyrrole films, effects of polymerization potential and electrolyte type”, Polymer, Vol. 36, No. 6, 1275-1286, 1995.
    76.Shin, Min-Chol & Kim, Hak-Sung, “Electrochemical characterization of polypyrrole/glucose oxidase biosensor: Part I. Influence of enzyme concentration on the growth and properties of film”, Biosensor & Bioelectronics, 11, 1/2, 161, 1996.
    77.Yuan,Y. J., Adeloju,S. B. & Wallace, G. G., ”In-situ electrochemical studies on the redox properties of polypyrrole in aqueous solutions”, European Polymer Journal, 35, 1761-1772, 1999.
    78.Richard F Taylor & Jerome S Schultz, Handbook of Chemical and Biological Sensors, p159.
    79.Shimidzu T., Ohtani A., Iyoda T. and Honda K., J. Electroanal. Chem., 224, 123, 1987.
    80.Yon-Hin B. F. Y. and Lowe C. R., “An investigation of 3-functionalized pyrrole-modified glucose oxidase for the covalent electropolymerization of enzyme films”, J. Electranal. Chem., 374, 167-172, 1994.
    81.Mohamed Amounas, Christophe Innocent, Serge Cosnier, Patrick Seta, “Amembrane based reactor with an enzyme immobilized by an avidin-biotin molecular recognition in a polymer matrix”, J. Membrane Science, 176, 169-176, 2000.
    82.Qing-Shan Li, Bang-Ce Ye, Bai-Xiang Liu, Jian-Jiang Zhong, “Improvement of performance of H2O2 oxidation at low working potential by incorporating TTF-TCNQ into a platinum wire electrode for glucose determination”, Biosensor and Bioelectronics, 14, 327-334, 1999.
    83.Hämmerle, M., Schumann W. & Schmidt, H. L., “Amperometric polypyrrole enzyme electrodes: effect of permeability and enzyme location”, Sensor & Actuators, B, 6, 106-112, 1992.
    84.P.J.H.J. van Os, Bult A., Koopal C.G.J. and W.P. van Bennekom, Analytica Chimica Acta, 335, 209, 1996.
    85.A. Guerrieri, G. E. De Benedetto, F. Palmisano and P. G. Zambonin, “Electrosythesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes: a glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized poly pyrrole bilayer”, Biosensor and Bioelectronics, 13, 1, 103-112, 1998.
    86.Wolfgang Schuhmann and Ruth Kittsteiner-Eberle,” Evaluation of polypyrrole/glucose oxidase electrodes in flow-injection systems for sucrose determination”, Biosensor and Bioelectronics, 6, 263-273, 1991.
    87.Holderoft and Fort, “Preparation and electrocatalytic properties of conducting films of polypyrrole containing platinum microparticles”, J. Electroanl. Chem., 240, 89-103, 1988.
    88.Joong-Hoon Cho, Min-Chol Shin and Hak-Sung Kim, Sensor and Actuators B, 30, 137, 1996.
    89.Daphan R. Yaniv, Larry McCormick, Joseph Wang and Najih Naser, J. Electroanal. Chem., 142, 353, 1991.
    90.Unsworth, J., Innis, P. C., Lunn, B. A., Jin, Zheshi & Norton, G. P., “The influence of electrolyte pH on the surface morphology of polypyrrole”, Synthetic Metals, 53, 59-69, 1992.
    91.Maurizio Quinto, Aurelio Cioancio and Piorgio Zambenin, “A molecular resolution AFM study of gold-adsorbed glucose oxidase as influenced by enzyme concentration”, J. of electroanalytical Chemistry, 448, 51-59, 1998.

    下載圖示 校內:2004-07-28公開
    校外:2005-07-28公開
    QR CODE