| 研究生: |
郭俊長 Kuo, Jiun-Chang |
|---|---|
| 論文名稱: |
單索面斜張橋橋塔承力變形行為分析 |
| 指導教授: |
方一匡
Fang, I. K. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 200 |
| 中文關鍵詞: | 收縮 、混凝土 、鋼纜 、橋塔 、斜張橋 、潛變 |
| 外文關鍵詞: | cable, pylon, creep, concrete, shrinkage |
| 相關次數: | 點閱:100 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在探討單索面斜張橋橋塔於施工過程之短期及長期承力變形行為,並以高屏溪斜張橋橋塔之施工為例,首先依據橋塔建造的程序,建立電腦分析模型,藉以計算橋塔在施工中每一階段之受力情形,再使用橋塔施工中的混凝土製作圓柱試體及矩形方柱試體,進行混凝土基本材料性質試驗,主要項目包含混凝土抗壓強度、彈性模數、工地及試驗室兩種環境之收縮及潛變應變等,由Table Curve軟體進行回歸分析,並經由尺寸效應之轉換,求得模擬橋塔混凝土短期及長期之基本材料性質。在混凝土之長期變形預測方面,本研究採用材齡調整有效模數方法(AAEM)與ACI 209之材齡係數及配合結構分析模型,分別求得橋塔基腳處混凝土之短期及長期應變歷程。
由材料性質試驗及分析模型,進行橋塔承力變形之模擬分析,並探討分析值與實測值之差異,得到下列幾點結論: (1)由幾近一年的試驗結果及透過Table Curve軟體之回歸分析模擬混凝土材料性質的方法,經與ACI 209推估720天之預測值比較,證實可作為長期預測之方程式。 (2)由三組施加不同應力之潛變試驗結果,證實混凝土在0.4fc’以下之應力作用所產生之潛變呈線性關係,此為潛變應變計算之主要依據。 (3)由不同尺寸之收縮試體試驗結果發現,尺寸愈小其收縮值愈大,且符合ACI 209表體比理論,經採用ACI 209有關尺寸修正係數作為試驗試體與橋塔之間尺寸效應的轉換,由實測值證實其為合理。 (4)由結構分析模型所得之分析值,經與全橋載重試驗時之橋面撓度及鋼纜預力變化之試驗值比較,證實本分析模型確實可靠。 (5)本研究以AAEM方法及ACI 209之材齡係數模擬橋塔混凝土長期應變歷程,經與實測值比較發現相當吻合,由此可證明本文之模擬分析方法可為後續設計及施工的參考。
1. Mohsen, A. S., and Arockiasamy, M., ” Analytical and Measured Strain In Sunshine Skyway Bridge, “ Journal of Bridge Engineering, ASCE, Vol. 1, No.2, May 1996, pp.87~97.
2. Young, J. F., and Mindess, S., ” Concrete, “ Prentice -Hall, New Jersey, 1981, pp.481~485.
3. Rasko, P. O., and Mehdi, S. Z., “ Concrete Creep and Shrinkage Prediction from Short-Term Tests, “ ACI Materials Journal, V.93, No.2, March-April 1996, pp.169~177.
4. Setter, N., and Roy, D. M., “Mechanical Features of Chemical Shrinkage of Cement Paste,” Cement and Concrete Research, Vol. 8, 1978, pp.623-634.
5. Reid, S. G., “Deformation of Concrete Due to Drying Creep, “ Creep and Shrinkage Concrete Proceedings of the Fifth International RILEM Symposium, 1994, pp.39~44.
6. Jamal, A. A., and Will Hansen, ” Effect of Specimen Size and Shape on Drying Shrinkage of Concrete, “ ACI Materials Journal, Vol. 84, No.2, March-April 1987, pp.130~135.
7. Neville, A. M.; Dilger, W. H.; and Brooks, J. J.,” Concrete of Plain and Structural Concrete,” Longman, New York, 1983.
8. Ali, S. Ngab; Arthur, H. Nilson; and Floyd, O. Slate, “Shrinkage and Creep of High Strength Concrete, “ ACI Journal, July-August 1981, pp.255~261.
9. Therese, M. Collins, “Proportioning High-Strength Concrete to Control Creep and Shrinkage, “ ACI Materials Journal, V.86, No.6, November -December 1989, pp.576~580.
10. Russell, H. G., “Creep and Shrinkage Data for Elevated Prestressed Control Gridgeways, ” ACI Journal, April 1978, pp.124~133.
11. Raed, M. Samra, “New Analysis For Creep Behavior In Concrete Columns, “ Journal of Structural Engineering, V.121, No.3, March 1995, pp.399~407.
12. Niels, J. Gimsing, “Cable Support Bridges,” John Wiley and Sons, Inc., New York, USA, 1997, 471pp.
13. 董士龍,「以微振法探討斜張橋於施工中及全橋載重試驗階段斜張鋼纜預力之變化」, 碩士論文, 國立成功大學土木工程研究所, 台南(2000)。
14. Anthony, H. Bryant, and Chayatit Vadhanavikkit, ” Creep, Shrinkage-Size, and Age at Loading Effects,“ ACI Materials Journal, Vol. 84, No.2, March-April 1987, pp.117~123.
15. Mohammad, M. Smadi; Floyd, O. Slate; and Arthur, H. Nilson, “Shrinkage and Creep of High-, Medium-, and Low-Strength Concrete, Including Overloads,” ACI Journal, May -June 1987, pp.224~234.
16. Gardner, N. J., and Zhao, J. W.,” Creep and Shrinkage Revisited,” ACI Materials Journal, V.90, No.3, May -June 1993, pp.236~246.
17. Ghall, A., and Faver, R., “ Concrete Structures- Stresses and Deformations” 2nd Edition., E&FN SPON, London, 1994, pp.351~361.
18. Tazawa, E., and Miyazawa, S., “Autogenous Shrinkage of Concrete and its Importance in Concrete Technology,“ Creep and Shrinkage Concrete Proceedings of the Fifth International RILEM Symposium, 1994, pp.39~44.
19. Kulka, F., and Polivka, M., ”The Properties of Creep and Shrinkage,” Journal of Const. Eng., Vol. 42, No.12, July 1978, pp.128~136.
20. Jandel Scientific, “Table Curve 2D,” Automated Curve Fitting Software, AISN Software Inc., 1994.
21. Swamy, R. N., and Arumugasaamy, P., “Flow Hardening Method of Creep Analysis of in Situ Reinforced Concrete Columns,” ACI Materials Journal, Proceedings V.77, No.19, May-June 1980, pp.153~160.
22. 惠榮炎,黃國興,易冰若, “混凝土的徐變,” 中國鐵道出版社,北京,第139-209頁(1988)。
23. Luigino, Dezi; Carlo, Ianni; and Angele, Marcello Tarantino, “ Simplified Creep Analysis of Composite Beams with Flexible Connector,” Journal of Structural Engineering, Vol. 119, No.5, May 1993, pp.1484~1497.
24. Raed, M. Samra,” Time-Dependent Deflections of Reinforced Concrete Beams Revisited,” Journal of Structural Engineering, Vol.123, No. 6, June 1997, pp.727~736.
25. Poston, R. W.; Kesner, K. E.; McDonald, J. E.; Vaysburd, A. M.; and Emmons, P. H., “ Selecting Durable Repair Materials: Performance Criteria – Laboratory Results, “ Concrete International, November 2000, pp.21~29.
26. Yue, L., and Taeilwe, L., “Development of An Empirical Model For Creep Recovery of Plain Concrete Including Aging Effects,“ Creep and Shrinkage Concrete Proceedings of the Fifth International RILEM Symposium, 1994, pp.673~678.
27. Arzoumanidis, S. G.; Burg, R. G.; and Schmid, I., ” Creep and Shrinkage in Composite Cable-Stayed Bridges,” Transportation Research Record 1290, 1991,pp.20~27.
28. William, L. Gamble, “Creep of Concrete in Variable Environments,” Journal of the Structural Division, ASCE, Vol. 108, No. ST10, October 1982, pp.2211~2221.