簡易檢索 / 詳目顯示

研究生: 張洪瑞
Chang, Hung-Jui
論文名稱: 磁振造影相容立體定位手術機器人觸覺回饋系統開發與設計
Development and Design of Haptic Feedback System for MRI-compatible Stereotactic Surgical Robot
指導教授: 朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 122
中文關鍵詞: 觸覺回饋系統立體定位手術神經外科手術機器人自抗擾控制模糊 控制雙向控制
外文關鍵詞: haptic feedback system, stereotactic surgery, neurosurgery, surgical robot, active disturbance rejection control, fuzzy control, bilateral control
相關次數: 點閱:117下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今神經外科取樣手術過程中,腦組織會因開顱或手術器械穿刺使得腦脊髓液流
    失,導致目標點位置與術前規劃的位置有偏差,因此為了提供手術成功率與安全性,
    能夠即時監測手術器械位置的術中磁振導引技術,是目前神經外科手術重要研究之一。
    本研究團隊先前已發展了磁振造影相容的立體定位機器人以及影像與機械性值仿真
    的含腫瘤大腦假體,本研究目標為發展可讓神經外科醫師遠端進行取樣手術的觸覺回
    饋系統,此系統包含由外科醫師操作的主系統裝置與對病人進行手術的從系統裝置。
    外科醫師透過此系統可以從遠端控制手術機器人的進針動作,並感受活檢針穿刺大腦
    時產生的反作用力。
    首先,透過 Solidworks 進行主系統裝置的操作桿設計以及有限元素分析,透過連
    桿裝置、壓電馬達與彈簧完成硬體設備,並使用 LabVIEW 程式發展即時雙向控制系
    統,此系統包含位置控制迴路與力量控制迴路。位置控制迴路使用速度前饋與比例控
    制器控制手術機器人位置,力量控制迴路共 4 種設計架構,使用了自抗擾控制、模糊
    控制器、PI 控制器等方法,並透過實驗評估 4 種架構的力量追踪表現。最後選用 PI
    控制器結合自抗擾控制作為最終的力量控制迴路並進行後續實驗,包含假體軟硬程度
    的辨識、以及本研究團隊先前發展的各型態腫瘤假體穿刺。實驗結果顯示使用者可透
    過本研究的觸覺回饋系統辨識組織的軟硬度並感受組織破裂的力量。本研究發展之觸
    覺回饋系統配合磁振造影相容立體定位手術機器人能提升神經外科手術安全性與成
    功率。

    During the neurosurgerical biopsy operation, the brain tissue may lose cerebrospinal fluid due to craniotomy or surgical puncture, resulting in the deviation of the target position from the pre-surgical planned position. To improve the success rate and safety of the surgery, intraoperative image guidance is getting popular and the intraoperative magneticresonance-image guidance technology for the positioning of surgical instruments becomes an important research area in neurosurgery. Our team has previously developed an MRIcompatible stereotactic surgical robot and tested on MRI-and-biomechanics mimicking brain-and-tumor phantoms. The main goal of this study was to develop a haptic feedback system that allows neurosurgeons to perform remote biopsy procedures. The haptic
    feedback system is consisted of two subsystems, namely a master system that operated by a neurosurgeon and a slave system that performed surgery on the patient. Through the haptic feedback system, the neurosurgeon can remotely control the needle insertion mechanism of the surgical robot and feel the reaction force during the biopsy procedure.
    The joystick design and finite element analysis of the master system were performed using software Solidworks. The hardware is consisted of a linkage device, a piezoelectric motor and a spring. Then a LabVIEW program is used to realize the real-time bilateral control system that has a position control loop and a force control loop. The position control loop uses velocity feedforward and proportional feedback to control the position of the surgical robot. For the force control loop, four control structures that combined proportional plus integral (PI) controller, fuzzy controller and an active disturbance rejection control were realized. Then the transparency and effectiveness of the four control structures were evaluated through the biopsy procedure on brain phantoms. Based on the experiment results, the PI controller combined with the active disturbance rejection control method was chosen for the final force control.
    Human experiments were carried out to evaluate the performance of the haptic feedback system, based on identifiability of the hardness of the phantoms and the puncture instant of various tissues of phantoms which were developed in our previous research. The experimental results show that the hardness of the tissue can be recognized successfully in six out of seven subjects, and the force of tissue rupture can be felt correctly. In conclusion, the haptic feedback system developed in this study may be used in the simulation and training of MRI-guided neurosurgical operations to improve the safety and success rate of the surgery.

    目錄 摘要 I 致謝 XVI 目錄 XVII 表目錄 XXI 圖目錄 XXII 符號表 XXVI 第一章 緒論 1 1.1 立體定位手術 1 1.1.1 有框立體定位系統 2 1.1.2 無框立體定位系統 3 1.1.3 機器定位輔助系統 4 1.1.4 術中影像導引 4 1.2 磁振造影相容機器系統 5 1.2.1 磁振造影相容性與安全性 6 1.2.2 本實驗室先前研究 7 1.3 大腦機械性質與穿刺力學 10 1.3.1 本實驗室先前研究 12 1.4 觸覺回饋系統 13 1.4.1 觸覺回饋系統的驅動方法 15 1.4.2 連桿型態的觸覺回饋系統 17 1.4.3 觸覺回饋控制系統 20 1.5 研究動機與目的 23 第二章 研究方法 24 2.1 研究架構 24 2.2 主系統裝置機構設計與分析 26 2.2.1 機構設計與分析 26 2.2.2 機構動力學模型 29 2.2.3 力量感測器校正 34 2.3 進針機構與光纖力量感測器 36 2.3.1 荷重元設計及分析 38 2.3.2 進針機構結構測試 39 2.3.3 光纖力量感測器校正 41 2.4 操作端壓電馬達控制 43 2.4.1 壓電馬達開迴路速度測試 43 2.4.2 壓電馬達閉迴路速度控制 44 2.5 觸覺回饋控制系統 46 2.5.1 主從位置控制系統 46 2.5.2 自抗擾控制 47 2.5.3 模糊控制 50 2.5.4 主從力量控制系統 55 2.6 觸覺回饋系統性能評估 58 2.6.1 觸覺回饋系統的通透性 58 2.6.2 控制性能評估實驗 60 2.6.3 假體軟硬度辨識實驗 61 2.6.4 各型態假體穿刺實驗 62 第三章 結果 65 3.1 操作端機構設計與分析結果 65 3.1.1 操作端機構設計結果 65 3.1.2 操作端模擬結果 68 3.1.3 力量感測器校正 71 3.2 進針機構與光纖力量感測器設計與分析結果 73 3.2.1 荷重元分析結果 73 3.2.2 進針機構結構測試結果 73 3.2.3 光纖力量感測器校正結果 76 3.3 操作端壓電馬達控制結果 78 3.4 觸覺回饋控制結果 82 3.4.1 主從位置控制系統 82 3.4.2 主從力量控制系統 83 3.5 觸覺回饋系統性能評估結果 86 3.5.1 觸覺回饋系統通透性評估結果 86 3.5.2 控制性能評估結果 89 3.5.3 假體軟硬度辨識結果 95 3.5.4 各型態假體穿刺結果 96 第四章 討論 102 4.1 操作端機構設計與分析 102 4.1.1 機構設計 102 4.1.2 機構分析 103 4.2 進針機構與光纖力量感測器設計與分析 105 4.2.1 光纖力量感測器 105 4.2.2 進針機構設計 106 4.3 雙向控制器設計 107 4.3.1 主從位置控制 107 4.3.2 主從力量控制 107 4.4 觸覺回饋系統性能 109 4.4.1 通透性評估 109 4.4.2 控制性能評估 109 4.4.3 軟硬度辨識實驗 110 4.4.4 各型態假體穿刺 111 4.5 未來展望 112 第五章 結論 114 參考文獻 115 附錄 121

    [1] Horsley, V., & Clarke, R. H. "The structure and functions of the cerebellum examined by a new method." Brain, vol. 31, no. 1, pp. 45-124, 1908.
    [2] Spiegel, E. A., Wycis, H. T., Marks, M., & Lee, A. J. "Stereotaxic apparatus for
    operations on the human brain." Science, vol. 106, no. 2754, pp. 349-350, 1947.
    [3] Leksell, L., & Jernberg, B. "Stereotaxis and tomography a technical note." Acta
    neurochirurgica, vol. 52, no. 1, pp. 1-7 1980.
    [4] Narabayashi, H. "Beginning and development of stereotaxic surgery in Tokyo.
    "Stereotactic and Functional Neurosurgery, vol. 37, no. 4, pp. 364-373, 1975.
    [5] Gildenberg, P. L. "The history of stereotactic neurosurgery." Neurosurgery Clinics
    of North America, vol. 1, no. 4, pp. 765-780, 1990.
    [6] McIntyre, C. C., Chaturvedi, A., Shamir, R. R., & Lempka, S. F. "Engineering the
    next generation of clinical deep brain stimulation technology". Brain stimulation,
    vol. 8, no. 1, pp. 21-26, 2015.
    [7] Elekta, "Leksell Stereotactic System" https://www.elekta.com/neurosurgery/leksell-stereotactic-system/
    [8] Roberts, D. W., Strohbehn, J. W., Hatch, J., et al. "A frameless stereotaxic
    integration of computerized tomographic imaging and the operating microscope."
    Journal of neurosurgery, vol. 65, no. 4, pp. 545-549, 1986.
    [9] Kato, A., Yoshimine, T., Hayakawa, T., Tomita, Y., et al. "A frameless, armless
    navigational system for computer-assisted neurosurgery." Journal of neurosurgery,
    vol. 75, no. 5, pp. 845-849, 1991.
    [10] Kozak, J., Nesper, M., Fischer, M., Lutze, et al. "Semiautomated registration using new markers for assessing the accuracy of a navigation system." Computer Aided Surgery, vol. 7, no. 1, pp. 11-24, 2002.
    [11] Mayfield Clinic, "Stereotactic brain biopsy, " 2018. https://d3djccaurgtij4.cloudfront.net/pe-brainbiopsy.pdf
    [12] Lu, Y., Yeung, C., Radmanesh, A., et al. "Comparative Effectiveness of FrameBased, Frameless, and Intraoperative Magnetic Resonance Imaging-Guided Brain
    Biopsy Techniques, " World Neurosurg., vol. 83, no. 3, pp. 261–268, 2015.
    [13] Devol, J. G. C. "Washington, DC: U.S. Patent and Trademark Office U.S. Patent
    No. 2,988,237." 1961
    [14] Lechky, O. "World’s First Surgical Robot in B.C., " The medical Post, vol. 21, no.
    23. p. 93, 1985.
    [15] Shao, H. M., Chen, J. Y., Truong, et al. "A new CT-aided robotic stereotaxis
    system". Proceedings of the Annual Symposium on Computer Application in
    Medical Care. pp. 668, 1985.
    [16] Li, Q. H., Zamorano, L., Pandya, A., Perez, R., Gong, J., & Diaz, F. "The
    application accuracy of the NeuroMate robot—a quantitative comparison with
    frameless and frame-based surgical localization systems. "Computer Aided
    Surgery, vol. 7, no. 2, pp. 90-98, 2002.
    [17] Heinig, M., Govela, M. F., Gasca, F., Dold, et al. "Mars—motor assisted robotic
    stereotaxy system. " In 2011 5th International IEEE/EMBS Conference on Neural
    Engineering, pp. 334-337. 2011.
    [18] Sloan, A. E., Ahluwalia, M. S., Valerio-Pascua, J., et al. "Results of the NeuroBlate
    System first-in-humans Phase I clinical trial for recurrent glioblastoma." Journal
    of neurosurgery, vol. 118, no. 6, pp. 1202-1219, 2013.
    [19] Hartkens, T., Hill, D. L., Castellano-Smith, A. D., et al. "Measurement and analysis
    of brain deformation during neurosurgery." IEEE transactions on medical imaging.
    vol. 22, no. 1, pp. 82-92, 2003.
    [20] Schulz, C., Waldeck, S., & Mauer, U. M. "Intraoperative image guidance in
    neurosurgery: development, current indications, and future trends." Radiology
    research and practice, 2012.
    [21] Elhawary, H., Tse, Z. T. H., Hamed, A., Rea, M., et al. "The case for MR‐
    compatible robotics: a review of the state of the art." The international journal of
    medical robotics and computer assisted surgery, vol. 4, no. 2, pp. 105-113, 2008.
    [22] Masamune, K., Kobayashi, E., et al. "Development of an MRI-compatible needle
    insertion manipulator for stereotactic neurosurgery." Journal of image guided
    surgery, vol. 1, no. 4, pp. 242-248, 1995
    [23] Gassert, R., Moser, R., Burdet, E., & Bleuler, H. "MRI/fMRI-compatible robotic
    system with force feedback for interaction with human motion." IEEE/ASME
    transactions on mechatronics. vol. 11, no. 2, pp. 216-224, 2006.
    [24] Fischer, G. S., Iordachita, I., et al "MRI-compatible pneumatic robot for
    transperineal prostate needle placement." IEEE/ASME transactions on
    mechatronics, vol. 13, no. 3, pp. 295-305, 2008.
    [25] Shang, W. "Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback", Worcester Polytechnic Institute, 2014.
    [26] Su, H., Shang, W., Li, G., Patel, N., & Fischer, G. S. "An MRI-guided telesurgery
    system using a Fabry-Perot interferometry force sensor and a pneumatic haptic
    device. " Annals of biomedical engineering, vol.45, no. 8, pp. 1917-1928 ,2017.
    [27] Seifabadi, R., Song, S. E., Krieger, A., Cho, N. B., et al. "Robotic system for MRI-
    guided prostate biopsy: feasibility of teleoperated needle insertion and ex vivo
    phantom study." International journal of computer assisted radiology and surgery,
    vol. 7, no. 2, pp. 181-190, 2012.
    [28] Miller, K., & Chinzei, K. "Constitutive modelling of brain tissue: experiment and
    theory." Journal of biomechanics, vol. 30, no. 11-12, pp. 1115-1121, 1997.
    [29] Miller, K., Chinzei, K., Orssengo, G., & Bednarz, P. "Mechanical properties of
    brain tissue in-vivo: experiment and computer simulation." Journal of
    biomechanics, vol. 33, no. 11, pp. 1369-1376, 2000.
    [30] Miller, K. "Constitutive model of brain tissue suitable for finite element analysis
    of surgical procedures." Journal of biomechanics, vol. 32, no. 5, pp. 531-537, 1999.
    [31] Aimedieu, P., & Grebe, R. "Tensile strength of cranial pia mater: preliminary
    results." Journal of neurosurgery, vol. 100, no. 1, pp. 111-114, 2004.
    [32] Jin, X., Yang, K. H., & King, A. I. "Mechanical properties of bovine pia–arachnoid
    complex in shear." Journal of biomechanics, vol. 44, no. 3, pp. 467-474, 2011.
    [33] Jin, X. Lee, J. B. Leung, L. Y. L, et al. "Biomechanical Response of the Bovine
    Pia-arachnoid Complex to Tensile Loading at Varying Strain-rates," Stapp Car
    Crash Journal, vol. 50, pp. 637-649, 2006.
    [34] Jin, X. C. Zhang, Ma, Yang, L. K, et al. "Biomechanical Response of the Bovine
    Pia-Arachnoid Complex to Normal Traction Loading at Varying Strain Rates,"
    Stapp Car Crash Journal, vol. 51, pp. 115-126, 2007.
    [35] Stewart, D. C., Rubiano, A., Dyson, K., & Simmons, C. S. "Mechanical
    characterization of human brain tumors from patients and comparison to potential
    surgical phantoms," PloS one, vol. 12, p. e0177561, 2017.
    [36] Chauvet, D., Imbault, M., Capelle, L., Demene, C., et al. " In Vivo Measurement
    of Brain Tumor Elasticity Using Intraoperative Shear Wave Elastography,"
    Ultraschall in der Medizin, vol. 37, pp.584-590, 2016.
    [37] Shiroishi, M. S., Cen, S. Y., Tamrazi, B., et al. "Predicting Meningioma
    Consistency on Preoperative Neuroimaging Studies," Neurosurgery clinics of
    North America, vol. 27, pp. 145–154, 2016.
    [38] Yiping, L., Ji, X., Daoying, G., & Bo, Y. "Prediction of the consistency of pituitary
    adenoma: A comparative study on diffusion-weighted imaging and pathological
    results," Journal of Neuroradiology, vol. 43, pp. 186-194, 2016.
    [39] Muthupillai, R., Lomas, D. J., Rossman, P. J., et al. "Magnetic resonance
    elastography by direct visualization of propagating acoustic strain waves." Science,
    vol. 269, no. 5232, pp. 1854-1857, 1995.
    [40] Simon, M., Guo, J., Papazoglou, S., Scholand-Engler, H., Erdmann, C., et al.
    118 "Non-invasive characterization of intracranial tumors by magnetic resonance
    elastography, " New Journal of Physics, vol. 15, 2013.
    [41] Reiss-Zimmermann, M., Streitberger, K. J., Sack, I., Braun, J., Arlt, F., Fritzsch,
    D., & Hoffmann, K. T. "High Resolution Imaging of Viscoelastic Properties of
    Intracranial Tumours by Multi-Frequency Magnetic Resonance Elastography,"
    Clinical neuroradiology, vol. 25, pp. 371-378, 2015.
    [42] Sakai, N., Takehara, Y., Yamashita, S., Ohishi, N., Kawaji, H., et al. "Shear
    Stiffness of 4 Common Intracranial Tumors Measured Using MR Elastography:
    Comparison with Intraoperative Consistency Grading," American Journal of
    Neuroradiology, vol. 37, pp. 1851-1859, 2016.
    [43] Xu, L., Lin, Y., Han, J. C., Xi, Z. N., Shen, H., & Gao, P. Y. "Magnetic Resonance
    Elastography of Brain Tumors: Preliminary Results", Acta Radiologica, vol. 48,
    pp. 327-330, 2007.
    [44] Abiri, A., Pensa, J., Tao, A., Ma, J., Juo, Y. Y., Askari, et al. "Multi-modal haptic
    feedback for grip force reduction in robotic surgery." Scientific reports, vol. 9, no.
    1, pp. 1-10, 2019.
    [45] 許嘉峻, “最小侵入式手術用進針穿刺力回饋裝置之設計製作”,國立成功大學
    機械工程學系碩士論文, 台南市, 2000.
    [46] Torabi, A., Nazari, A. A., Conrad-Baldwin, E., et al. "Kinematic design of linkagebased haptic interfaces for medical applications: a review."Progress in Biomedical Engineering, 2021.
    [47] Massie, T. H. "Design of a three degree of freedom force-reflecting haptic
    interface" Massachusetts Institute of Technology, 1993.
    [48] Yeh, C. H., Su, F. C., Shan, Y. S., Dosaev, M., et al. "Application of piezoelectric
    actuator to simplified haptic feedback system." Sensors and Actuators A: Physical,
    vol.303, 2020.
    [49] Guo, Y., Yang, X., Wang, H., Zhang, Y., et al. "Five-Fingered Passive Force
    Feedback Glove Using a Variable Ratio Lever Mechanism." Actuators. vol. 10. no.
    5, 2021.
    [50] An, J., & Kwon, D. S. "Haptic experimentation on a hybrid active/passive force
    feedback device." Proceedings 2002 IEEE International Conference on Robotics
    and Automation, vol. 4. pp.4217-4222, 2002.
    [51] Nam, Y. J., & Park, M. K. "A hybrid haptic device for wide-ranged force reflection and improved transparency." 2007 International Conference on Control,
    Automation and Systems, pp.1015-1020, 2007.
    [52] Conti, F., & Khatib, O. "A new actuation approach for haptic interface design.
    "The International Journal of Robotics Research, vol.28, no.6, pp.834-848, 2009.
    [53] Hayward, V., Gregorio, P., Astley, O., Greenish, et al. "Freedom-7: A high fidelity
    seven axis haptic device with application to surgical training." Experimental
    Robotics V. Springer, pp.443-456, 1998.
    [54] 3D systems, "touch", https://www.3dsystems.com/haptics-devices/touch
    [55] 3D systems, "touch-x", https://www.3dsystems.com/haptics-devices/touch-x
    [56] 3D systems, "3d-systems-phantom-premium",
    https://www.3dsystems.com/haptics-devices/3d-systems-phantom-premium
    [57] Haption, "virtuose-3d-desktop", https://www.haption.com/en/productsen/virtuose-3d-desktop-en.html
    [58] Haption, "virtuose-6d-desktop", https://www.haption.com/en/productsen/virtuose-6d-desktop-en.html
    [59] Stocco, L. J., Salcudean, S. E., & Sassani, F. "Optimal kinematic design of a haptic pen." IEEE/ASME transactions on Mechatronics, vol. 6, no. 3, pp. 210-220, 2001.
    [60] Christiansson, G. A., & Fritz, E. C. "A novel planar 3-DOF hard-soft haptic
    teleoperator." Second Joint EuroHaptics Conference and Symposium on Haptic
    Interfaces for Virtual Environment and Teleoperator Systems (WHC'07), pp. 361-
    366, 2007.
    [61] DiMaio, S. P., Salcudean, S. E., & Sirouspour, M. R. "Haptic interaction within a
    planar environment. " In ASME International Mechanical Engineering Congress
    and Exposition, vol. 26652, pp. 1223-1230, 2000.
    [62] Tobergte, A., Helmer, P., Hagn, U., Rouiller, P., et al. "The sigma. 7 haptic interface for MiroSurge: A new bi-manual surgical console." 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp.3023-3030, 2011.
    [63] Vulliez, M., Zeghloul, S., & Khatib, O. "Design strategy and issues of the
    Delthaptic, a new 6-DOF parallel haptic device." Mechanism and Machine Theory,
    vol. 128, pp. 395-411, 2018.
    [64] Dede, M. İ. C., Selvi, Ö., Bilgincan, T., & Kant, Y. "Design of a haptic device for
    teleoperation and virtual reality systems." 2009 IEEE International Conference on
    Systems, Man and Cybernetics. pp. 3623-3628, 2009.
    [65] Torabi, A., Khadem, M., Zareinia, K., et al. "Application of a redundant haptic
    interface in enhancing soft-tissue stiffness discrimination." IEEE Robotics and
    Automation Letters, vol. 4, no. 2, pp. 1037-1044, 2019.
    [66] Ueberle, M., Mock, N., & Buss, M. "Vishard10, a novel hyper-redundant haptic
    interface." 12th International Symposium on Haptic Interfaces for Virtual
    Environment and Teleoperator Systems, 2004. HAPTICS'04, pp. 58-65, 2004.
    [67] Lawrence, D. A. "Stability and transparency in bilateral teleoperation." IEEE
    transactions on robotics and automation, vol. 9, no. 5, pp.624-637, 1993.
    [68] Yoshikawa, T. "Dynamic hybrid position/force control of robot manipulators--
    description of hand constraints and calculation of joint driving force." IEEE
    Journal on Robotics and Automation, vol. 3, no. 5, pp. 386-392, 1987.
    [69] Tavakoli, M., Aziminejad, A., et al. "High-fidelity bilateral teleoperation systems
    and the effect of multimodal haptics." IEEE Transactions on Systems, Man, and
    Cybernetics, Part B (Cybernetics), vol. 37, no. 6, pp. 1512-1528, 2007.
    [70] Hogan, N. "Controlling impedance at the man/machine interface." 1989 IEEE
    International Conference on Robotics and automation. pp. 1626-1627, 1989.
    [71] Park, H., & Lee, J. "Adaptive impedance control of a haptic interface."
    Mechatronics, vol. 14, no. 3, pp. 237-253, 2004.
    [72] Garmsiri, N., Sun, Y., Sekhavat, P., et al. "Admittance-Controlled Teleoperation of a Pneumatic Actuator: Implementation and Stability Analysis." Actuators. vol. 9,
    no. 4, pp. 103, 2020.
    [73] Abdossalami, A., & Sirouspour, S. "Adaptive control for improved transparency
    in haptic simulations." IEEE Transactions on Haptics, vol. 2, no. 1, pp 2-14,2018.
    [74] Kebria, P. M., Khosravi, A., Nahavandi, S., et al. "Robust adaptive control scheme
    for teleoperation systems with delay and uncertainties." IEEE transactions on
    cybernetics, vol. 50, no. 7, pp. 3243-3253, 2017.
    [75] 何炳林, “磁振造影相容之神經外科用立體定位手術機器人之發展”,國立成功
    大學機械工程學系碩士論文, 台南市, 2015.
    [76] 陳煌霖, “磁振造影相容之神經外科手術用五軸立體定位機器系統研究”,國立
    成功大學機械工程學系碩士論文, 台南市, 2017.
    [77] 彭郁濃, “術中核磁共振影像導引立體定位手術機器人”,國立成功大學機械工
    程學系碩士論文, 台南市, 2019.
    [78] 蕭正豪, “機械性值與磁振造影仿真之大腦假體研究”,國立成功大學機械工程
    學系碩士論文, 台南市, 2020.
    [79] 賴郁欣, “磁振造影仿真大腦及病灶假體與其穿刺力學之研究”,國立成功大學
    機械工程學系碩士論文, 台南市, 2021.
    [80] 陳承寬, “術中磁共振影像導引與光纖力回授立體定位手術機器人”,國立成功
    大學機械工程學系碩士論文, 台南市, 2021.
    [81] Han, J. "From PID to active disturbance rejection control." IEEE transactions on
    Industrial Electronics, vol. 56, no. 3, pp. 900-906, 2009.
    [82] Tang, K. S., Man, K. F., Chen, G., & Kwong, S. "An optimal fuzzy PID controller."
    IEEE transactions on industrial electronics, vol. 48, no. 4, pp. 757-765, 2001.

    下載圖示 校內:2024-07-31公開
    校外:2024-07-31公開
    QR CODE