| 研究生: |
張洪瑞 Chang, Hung-Jui |
|---|---|
| 論文名稱: |
磁振造影相容立體定位手術機器人觸覺回饋系統開發與設計 Development and Design of Haptic Feedback System for MRI-compatible Stereotactic Surgical Robot |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 觸覺回饋系統 、立體定位手術 、神經外科 、手術機器人 、自抗擾控制 、模糊 控制 、雙向控制 |
| 外文關鍵詞: | haptic feedback system, stereotactic surgery, neurosurgery, surgical robot, active disturbance rejection control, fuzzy control, bilateral control |
| 相關次數: | 點閱:117 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今神經外科取樣手術過程中,腦組織會因開顱或手術器械穿刺使得腦脊髓液流
失,導致目標點位置與術前規劃的位置有偏差,因此為了提供手術成功率與安全性,
能夠即時監測手術器械位置的術中磁振導引技術,是目前神經外科手術重要研究之一。
本研究團隊先前已發展了磁振造影相容的立體定位機器人以及影像與機械性值仿真
的含腫瘤大腦假體,本研究目標為發展可讓神經外科醫師遠端進行取樣手術的觸覺回
饋系統,此系統包含由外科醫師操作的主系統裝置與對病人進行手術的從系統裝置。
外科醫師透過此系統可以從遠端控制手術機器人的進針動作,並感受活檢針穿刺大腦
時產生的反作用力。
首先,透過 Solidworks 進行主系統裝置的操作桿設計以及有限元素分析,透過連
桿裝置、壓電馬達與彈簧完成硬體設備,並使用 LabVIEW 程式發展即時雙向控制系
統,此系統包含位置控制迴路與力量控制迴路。位置控制迴路使用速度前饋與比例控
制器控制手術機器人位置,力量控制迴路共 4 種設計架構,使用了自抗擾控制、模糊
控制器、PI 控制器等方法,並透過實驗評估 4 種架構的力量追踪表現。最後選用 PI
控制器結合自抗擾控制作為最終的力量控制迴路並進行後續實驗,包含假體軟硬程度
的辨識、以及本研究團隊先前發展的各型態腫瘤假體穿刺。實驗結果顯示使用者可透
過本研究的觸覺回饋系統辨識組織的軟硬度並感受組織破裂的力量。本研究發展之觸
覺回饋系統配合磁振造影相容立體定位手術機器人能提升神經外科手術安全性與成
功率。
During the neurosurgerical biopsy operation, the brain tissue may lose cerebrospinal fluid due to craniotomy or surgical puncture, resulting in the deviation of the target position from the pre-surgical planned position. To improve the success rate and safety of the surgery, intraoperative image guidance is getting popular and the intraoperative magneticresonance-image guidance technology for the positioning of surgical instruments becomes an important research area in neurosurgery. Our team has previously developed an MRIcompatible stereotactic surgical robot and tested on MRI-and-biomechanics mimicking brain-and-tumor phantoms. The main goal of this study was to develop a haptic feedback system that allows neurosurgeons to perform remote biopsy procedures. The haptic
feedback system is consisted of two subsystems, namely a master system that operated by a neurosurgeon and a slave system that performed surgery on the patient. Through the haptic feedback system, the neurosurgeon can remotely control the needle insertion mechanism of the surgical robot and feel the reaction force during the biopsy procedure.
The joystick design and finite element analysis of the master system were performed using software Solidworks. The hardware is consisted of a linkage device, a piezoelectric motor and a spring. Then a LabVIEW program is used to realize the real-time bilateral control system that has a position control loop and a force control loop. The position control loop uses velocity feedforward and proportional feedback to control the position of the surgical robot. For the force control loop, four control structures that combined proportional plus integral (PI) controller, fuzzy controller and an active disturbance rejection control were realized. Then the transparency and effectiveness of the four control structures were evaluated through the biopsy procedure on brain phantoms. Based on the experiment results, the PI controller combined with the active disturbance rejection control method was chosen for the final force control.
Human experiments were carried out to evaluate the performance of the haptic feedback system, based on identifiability of the hardness of the phantoms and the puncture instant of various tissues of phantoms which were developed in our previous research. The experimental results show that the hardness of the tissue can be recognized successfully in six out of seven subjects, and the force of tissue rupture can be felt correctly. In conclusion, the haptic feedback system developed in this study may be used in the simulation and training of MRI-guided neurosurgical operations to improve the safety and success rate of the surgery.
[1] Horsley, V., & Clarke, R. H. "The structure and functions of the cerebellum examined by a new method." Brain, vol. 31, no. 1, pp. 45-124, 1908.
[2] Spiegel, E. A., Wycis, H. T., Marks, M., & Lee, A. J. "Stereotaxic apparatus for
operations on the human brain." Science, vol. 106, no. 2754, pp. 349-350, 1947.
[3] Leksell, L., & Jernberg, B. "Stereotaxis and tomography a technical note." Acta
neurochirurgica, vol. 52, no. 1, pp. 1-7 1980.
[4] Narabayashi, H. "Beginning and development of stereotaxic surgery in Tokyo.
"Stereotactic and Functional Neurosurgery, vol. 37, no. 4, pp. 364-373, 1975.
[5] Gildenberg, P. L. "The history of stereotactic neurosurgery." Neurosurgery Clinics
of North America, vol. 1, no. 4, pp. 765-780, 1990.
[6] McIntyre, C. C., Chaturvedi, A., Shamir, R. R., & Lempka, S. F. "Engineering the
next generation of clinical deep brain stimulation technology". Brain stimulation,
vol. 8, no. 1, pp. 21-26, 2015.
[7] Elekta, "Leksell Stereotactic System" https://www.elekta.com/neurosurgery/leksell-stereotactic-system/
[8] Roberts, D. W., Strohbehn, J. W., Hatch, J., et al. "A frameless stereotaxic
integration of computerized tomographic imaging and the operating microscope."
Journal of neurosurgery, vol. 65, no. 4, pp. 545-549, 1986.
[9] Kato, A., Yoshimine, T., Hayakawa, T., Tomita, Y., et al. "A frameless, armless
navigational system for computer-assisted neurosurgery." Journal of neurosurgery,
vol. 75, no. 5, pp. 845-849, 1991.
[10] Kozak, J., Nesper, M., Fischer, M., Lutze, et al. "Semiautomated registration using new markers for assessing the accuracy of a navigation system." Computer Aided Surgery, vol. 7, no. 1, pp. 11-24, 2002.
[11] Mayfield Clinic, "Stereotactic brain biopsy, " 2018. https://d3djccaurgtij4.cloudfront.net/pe-brainbiopsy.pdf
[12] Lu, Y., Yeung, C., Radmanesh, A., et al. "Comparative Effectiveness of FrameBased, Frameless, and Intraoperative Magnetic Resonance Imaging-Guided Brain
Biopsy Techniques, " World Neurosurg., vol. 83, no. 3, pp. 261–268, 2015.
[13] Devol, J. G. C. "Washington, DC: U.S. Patent and Trademark Office U.S. Patent
No. 2,988,237." 1961
[14] Lechky, O. "World’s First Surgical Robot in B.C., " The medical Post, vol. 21, no.
23. p. 93, 1985.
[15] Shao, H. M., Chen, J. Y., Truong, et al. "A new CT-aided robotic stereotaxis
system". Proceedings of the Annual Symposium on Computer Application in
Medical Care. pp. 668, 1985.
[16] Li, Q. H., Zamorano, L., Pandya, A., Perez, R., Gong, J., & Diaz, F. "The
application accuracy of the NeuroMate robot—a quantitative comparison with
frameless and frame-based surgical localization systems. "Computer Aided
Surgery, vol. 7, no. 2, pp. 90-98, 2002.
[17] Heinig, M., Govela, M. F., Gasca, F., Dold, et al. "Mars—motor assisted robotic
stereotaxy system. " In 2011 5th International IEEE/EMBS Conference on Neural
Engineering, pp. 334-337. 2011.
[18] Sloan, A. E., Ahluwalia, M. S., Valerio-Pascua, J., et al. "Results of the NeuroBlate
System first-in-humans Phase I clinical trial for recurrent glioblastoma." Journal
of neurosurgery, vol. 118, no. 6, pp. 1202-1219, 2013.
[19] Hartkens, T., Hill, D. L., Castellano-Smith, A. D., et al. "Measurement and analysis
of brain deformation during neurosurgery." IEEE transactions on medical imaging.
vol. 22, no. 1, pp. 82-92, 2003.
[20] Schulz, C., Waldeck, S., & Mauer, U. M. "Intraoperative image guidance in
neurosurgery: development, current indications, and future trends." Radiology
research and practice, 2012.
[21] Elhawary, H., Tse, Z. T. H., Hamed, A., Rea, M., et al. "The case for MR‐
compatible robotics: a review of the state of the art." The international journal of
medical robotics and computer assisted surgery, vol. 4, no. 2, pp. 105-113, 2008.
[22] Masamune, K., Kobayashi, E., et al. "Development of an MRI-compatible needle
insertion manipulator for stereotactic neurosurgery." Journal of image guided
surgery, vol. 1, no. 4, pp. 242-248, 1995
[23] Gassert, R., Moser, R., Burdet, E., & Bleuler, H. "MRI/fMRI-compatible robotic
system with force feedback for interaction with human motion." IEEE/ASME
transactions on mechatronics. vol. 11, no. 2, pp. 216-224, 2006.
[24] Fischer, G. S., Iordachita, I., et al "MRI-compatible pneumatic robot for
transperineal prostate needle placement." IEEE/ASME transactions on
mechatronics, vol. 13, no. 3, pp. 295-305, 2008.
[25] Shang, W. "Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback", Worcester Polytechnic Institute, 2014.
[26] Su, H., Shang, W., Li, G., Patel, N., & Fischer, G. S. "An MRI-guided telesurgery
system using a Fabry-Perot interferometry force sensor and a pneumatic haptic
device. " Annals of biomedical engineering, vol.45, no. 8, pp. 1917-1928 ,2017.
[27] Seifabadi, R., Song, S. E., Krieger, A., Cho, N. B., et al. "Robotic system for MRI-
guided prostate biopsy: feasibility of teleoperated needle insertion and ex vivo
phantom study." International journal of computer assisted radiology and surgery,
vol. 7, no. 2, pp. 181-190, 2012.
[28] Miller, K., & Chinzei, K. "Constitutive modelling of brain tissue: experiment and
theory." Journal of biomechanics, vol. 30, no. 11-12, pp. 1115-1121, 1997.
[29] Miller, K., Chinzei, K., Orssengo, G., & Bednarz, P. "Mechanical properties of
brain tissue in-vivo: experiment and computer simulation." Journal of
biomechanics, vol. 33, no. 11, pp. 1369-1376, 2000.
[30] Miller, K. "Constitutive model of brain tissue suitable for finite element analysis
of surgical procedures." Journal of biomechanics, vol. 32, no. 5, pp. 531-537, 1999.
[31] Aimedieu, P., & Grebe, R. "Tensile strength of cranial pia mater: preliminary
results." Journal of neurosurgery, vol. 100, no. 1, pp. 111-114, 2004.
[32] Jin, X., Yang, K. H., & King, A. I. "Mechanical properties of bovine pia–arachnoid
complex in shear." Journal of biomechanics, vol. 44, no. 3, pp. 467-474, 2011.
[33] Jin, X. Lee, J. B. Leung, L. Y. L, et al. "Biomechanical Response of the Bovine
Pia-arachnoid Complex to Tensile Loading at Varying Strain-rates," Stapp Car
Crash Journal, vol. 50, pp. 637-649, 2006.
[34] Jin, X. C. Zhang, Ma, Yang, L. K, et al. "Biomechanical Response of the Bovine
Pia-Arachnoid Complex to Normal Traction Loading at Varying Strain Rates,"
Stapp Car Crash Journal, vol. 51, pp. 115-126, 2007.
[35] Stewart, D. C., Rubiano, A., Dyson, K., & Simmons, C. S. "Mechanical
characterization of human brain tumors from patients and comparison to potential
surgical phantoms," PloS one, vol. 12, p. e0177561, 2017.
[36] Chauvet, D., Imbault, M., Capelle, L., Demene, C., et al. " In Vivo Measurement
of Brain Tumor Elasticity Using Intraoperative Shear Wave Elastography,"
Ultraschall in der Medizin, vol. 37, pp.584-590, 2016.
[37] Shiroishi, M. S., Cen, S. Y., Tamrazi, B., et al. "Predicting Meningioma
Consistency on Preoperative Neuroimaging Studies," Neurosurgery clinics of
North America, vol. 27, pp. 145–154, 2016.
[38] Yiping, L., Ji, X., Daoying, G., & Bo, Y. "Prediction of the consistency of pituitary
adenoma: A comparative study on diffusion-weighted imaging and pathological
results," Journal of Neuroradiology, vol. 43, pp. 186-194, 2016.
[39] Muthupillai, R., Lomas, D. J., Rossman, P. J., et al. "Magnetic resonance
elastography by direct visualization of propagating acoustic strain waves." Science,
vol. 269, no. 5232, pp. 1854-1857, 1995.
[40] Simon, M., Guo, J., Papazoglou, S., Scholand-Engler, H., Erdmann, C., et al.
118 "Non-invasive characterization of intracranial tumors by magnetic resonance
elastography, " New Journal of Physics, vol. 15, 2013.
[41] Reiss-Zimmermann, M., Streitberger, K. J., Sack, I., Braun, J., Arlt, F., Fritzsch,
D., & Hoffmann, K. T. "High Resolution Imaging of Viscoelastic Properties of
Intracranial Tumours by Multi-Frequency Magnetic Resonance Elastography,"
Clinical neuroradiology, vol. 25, pp. 371-378, 2015.
[42] Sakai, N., Takehara, Y., Yamashita, S., Ohishi, N., Kawaji, H., et al. "Shear
Stiffness of 4 Common Intracranial Tumors Measured Using MR Elastography:
Comparison with Intraoperative Consistency Grading," American Journal of
Neuroradiology, vol. 37, pp. 1851-1859, 2016.
[43] Xu, L., Lin, Y., Han, J. C., Xi, Z. N., Shen, H., & Gao, P. Y. "Magnetic Resonance
Elastography of Brain Tumors: Preliminary Results", Acta Radiologica, vol. 48,
pp. 327-330, 2007.
[44] Abiri, A., Pensa, J., Tao, A., Ma, J., Juo, Y. Y., Askari, et al. "Multi-modal haptic
feedback for grip force reduction in robotic surgery." Scientific reports, vol. 9, no.
1, pp. 1-10, 2019.
[45] 許嘉峻, “最小侵入式手術用進針穿刺力回饋裝置之設計製作”,國立成功大學
機械工程學系碩士論文, 台南市, 2000.
[46] Torabi, A., Nazari, A. A., Conrad-Baldwin, E., et al. "Kinematic design of linkagebased haptic interfaces for medical applications: a review."Progress in Biomedical Engineering, 2021.
[47] Massie, T. H. "Design of a three degree of freedom force-reflecting haptic
interface" Massachusetts Institute of Technology, 1993.
[48] Yeh, C. H., Su, F. C., Shan, Y. S., Dosaev, M., et al. "Application of piezoelectric
actuator to simplified haptic feedback system." Sensors and Actuators A: Physical,
vol.303, 2020.
[49] Guo, Y., Yang, X., Wang, H., Zhang, Y., et al. "Five-Fingered Passive Force
Feedback Glove Using a Variable Ratio Lever Mechanism." Actuators. vol. 10. no.
5, 2021.
[50] An, J., & Kwon, D. S. "Haptic experimentation on a hybrid active/passive force
feedback device." Proceedings 2002 IEEE International Conference on Robotics
and Automation, vol. 4. pp.4217-4222, 2002.
[51] Nam, Y. J., & Park, M. K. "A hybrid haptic device for wide-ranged force reflection and improved transparency." 2007 International Conference on Control,
Automation and Systems, pp.1015-1020, 2007.
[52] Conti, F., & Khatib, O. "A new actuation approach for haptic interface design.
"The International Journal of Robotics Research, vol.28, no.6, pp.834-848, 2009.
[53] Hayward, V., Gregorio, P., Astley, O., Greenish, et al. "Freedom-7: A high fidelity
seven axis haptic device with application to surgical training." Experimental
Robotics V. Springer, pp.443-456, 1998.
[54] 3D systems, "touch", https://www.3dsystems.com/haptics-devices/touch
[55] 3D systems, "touch-x", https://www.3dsystems.com/haptics-devices/touch-x
[56] 3D systems, "3d-systems-phantom-premium",
https://www.3dsystems.com/haptics-devices/3d-systems-phantom-premium
[57] Haption, "virtuose-3d-desktop", https://www.haption.com/en/productsen/virtuose-3d-desktop-en.html
[58] Haption, "virtuose-6d-desktop", https://www.haption.com/en/productsen/virtuose-6d-desktop-en.html
[59] Stocco, L. J., Salcudean, S. E., & Sassani, F. "Optimal kinematic design of a haptic pen." IEEE/ASME transactions on Mechatronics, vol. 6, no. 3, pp. 210-220, 2001.
[60] Christiansson, G. A., & Fritz, E. C. "A novel planar 3-DOF hard-soft haptic
teleoperator." Second Joint EuroHaptics Conference and Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems (WHC'07), pp. 361-
366, 2007.
[61] DiMaio, S. P., Salcudean, S. E., & Sirouspour, M. R. "Haptic interaction within a
planar environment. " In ASME International Mechanical Engineering Congress
and Exposition, vol. 26652, pp. 1223-1230, 2000.
[62] Tobergte, A., Helmer, P., Hagn, U., Rouiller, P., et al. "The sigma. 7 haptic interface for MiroSurge: A new bi-manual surgical console." 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp.3023-3030, 2011.
[63] Vulliez, M., Zeghloul, S., & Khatib, O. "Design strategy and issues of the
Delthaptic, a new 6-DOF parallel haptic device." Mechanism and Machine Theory,
vol. 128, pp. 395-411, 2018.
[64] Dede, M. İ. C., Selvi, Ö., Bilgincan, T., & Kant, Y. "Design of a haptic device for
teleoperation and virtual reality systems." 2009 IEEE International Conference on
Systems, Man and Cybernetics. pp. 3623-3628, 2009.
[65] Torabi, A., Khadem, M., Zareinia, K., et al. "Application of a redundant haptic
interface in enhancing soft-tissue stiffness discrimination." IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 1037-1044, 2019.
[66] Ueberle, M., Mock, N., & Buss, M. "Vishard10, a novel hyper-redundant haptic
interface." 12th International Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, 2004. HAPTICS'04, pp. 58-65, 2004.
[67] Lawrence, D. A. "Stability and transparency in bilateral teleoperation." IEEE
transactions on robotics and automation, vol. 9, no. 5, pp.624-637, 1993.
[68] Yoshikawa, T. "Dynamic hybrid position/force control of robot manipulators--
description of hand constraints and calculation of joint driving force." IEEE
Journal on Robotics and Automation, vol. 3, no. 5, pp. 386-392, 1987.
[69] Tavakoli, M., Aziminejad, A., et al. "High-fidelity bilateral teleoperation systems
and the effect of multimodal haptics." IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 37, no. 6, pp. 1512-1528, 2007.
[70] Hogan, N. "Controlling impedance at the man/machine interface." 1989 IEEE
International Conference on Robotics and automation. pp. 1626-1627, 1989.
[71] Park, H., & Lee, J. "Adaptive impedance control of a haptic interface."
Mechatronics, vol. 14, no. 3, pp. 237-253, 2004.
[72] Garmsiri, N., Sun, Y., Sekhavat, P., et al. "Admittance-Controlled Teleoperation of a Pneumatic Actuator: Implementation and Stability Analysis." Actuators. vol. 9,
no. 4, pp. 103, 2020.
[73] Abdossalami, A., & Sirouspour, S. "Adaptive control for improved transparency
in haptic simulations." IEEE Transactions on Haptics, vol. 2, no. 1, pp 2-14,2018.
[74] Kebria, P. M., Khosravi, A., Nahavandi, S., et al. "Robust adaptive control scheme
for teleoperation systems with delay and uncertainties." IEEE transactions on
cybernetics, vol. 50, no. 7, pp. 3243-3253, 2017.
[75] 何炳林, “磁振造影相容之神經外科用立體定位手術機器人之發展”,國立成功
大學機械工程學系碩士論文, 台南市, 2015.
[76] 陳煌霖, “磁振造影相容之神經外科手術用五軸立體定位機器系統研究”,國立
成功大學機械工程學系碩士論文, 台南市, 2017.
[77] 彭郁濃, “術中核磁共振影像導引立體定位手術機器人”,國立成功大學機械工
程學系碩士論文, 台南市, 2019.
[78] 蕭正豪, “機械性值與磁振造影仿真之大腦假體研究”,國立成功大學機械工程
學系碩士論文, 台南市, 2020.
[79] 賴郁欣, “磁振造影仿真大腦及病灶假體與其穿刺力學之研究”,國立成功大學
機械工程學系碩士論文, 台南市, 2021.
[80] 陳承寬, “術中磁共振影像導引與光纖力回授立體定位手術機器人”,國立成功
大學機械工程學系碩士論文, 台南市, 2021.
[81] Han, J. "From PID to active disturbance rejection control." IEEE transactions on
Industrial Electronics, vol. 56, no. 3, pp. 900-906, 2009.
[82] Tang, K. S., Man, K. F., Chen, G., & Kwong, S. "An optimal fuzzy PID controller."
IEEE transactions on industrial electronics, vol. 48, no. 4, pp. 757-765, 2001.