簡易檢索 / 詳目顯示

研究生: 賴翌維
Lai, Yi-Wei
論文名稱: 具有模糊特徵選擇、文字增強和可解釋人工智慧的深度學習框架
A Deep Learning Framework with Fuzzy Feature Selection, Text Augmentation, and Explainable AI
指導教授: 陳牧言
Chen, Mu-Yen
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 102
中文關鍵詞: COVID-19氣候變遷模糊聚類深度學習可解釋性AI大型語言模型
外文關鍵詞: COVID-19, Climate Change, Fuzzy clustering, Deep Learning, Explainable AI, Large Language Model
ORCID: https://orcid.org/0000-0002-1295-0308
相關次數: 點閱:113下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新興領域的資料具有其資料相關特性,諸如資料特徵破碎、資料大幅缺失、資料極度不平衡等情況,像是COVID-19與氣候變遷這2個研究領域,這兩個領域近年來備受關注,而除了對於像是確診人數、氣候溫度變化等量化的資料進行分析,在自然語言處理方面,以COVID-19來說,大流行期間與 COVID-19 相關的多語言版本的假新聞的迅速傳播給公共衛生當局帶來了重大挑戰。而在氣候變遷領域,TCFD最近被引入作為投資者投資企業時的準則,使得企業須逐步揭露自身對於氣候變遷的貢獻,但是由於是自主揭露,企業普遍只揭露對自身有利的部分。從上述可知,這兩個新興領域的研究資料集存在了截然不同的資料特性。
    為了因應不同的資料集特性,本研究設計了3種實驗來應對這些挑戰:第一個實驗為了驗證多語言性對於文字分類的影響,本研究使用深度學習模型對於不同語言的COVID-19 假新聞進行分類,第二個實驗為了驗證特徵重要性對於文字分類的影響,本研究設計了一種模糊特徵聚類方法應用於COVID-19 假新聞檢測。第三個實驗為了驗證資料不平衡性,在TCFD文本中使用文字增生模型強化資料特性並使用深度學習分類,為了解決深度學習的黑盒子問題,在實驗3使用可解釋性AI技術對TCFD文本進行解釋,最後為了驗證大型語言模型的效能,在3個實驗中都使用了最新的大型語言模型進行分析。
    在結果上,實驗一顯示使用 BiLSTM深度學習模型,可以實現很高的分類準確率(英語為 99%,中文為 86%)。實驗2結果顯示整合關鍵特徵可以保持準確性,同時顯著減少檢測時間(英語為 10%,中文為 15%)。實驗3結果顯示使用生成對抗網路進行資料增強來解決資料不平衡提高了分類性能指標。可解釋的人工智慧技術提供了影響模型預測的關鍵特徵及其與分類結果的關係,而大型語言模型雖然未超過深度學習所達到的效果,但透過其內部大量的參數與訓練內容也提供了良好的分類效果。

    The data in emerging fields exhibit unique characteristics, such as fragmented data, significant data loss, and extreme data imbalance. For instance, the research fields of COVID-19 and climate change have garnered significant attention in recent years. Beyond analyzing quantitative data such as the number of confirmed cases and climate temperature variations, natural language processing also plays a crucial role. In the case of COVID-19, the rapid spread of multilingual versions of fake news related to the pandemic posed significant challenges to public health authorities. In the climate change domain, the Task Force on Climate-related Financial Disclosures (TCFD) was recently introduced as a guideline for investors when evaluating companies, requiring businesses to gradually disclose their contributions to climate change. However, since these disclosures are voluntary, companies often reveal only information that is favorable to them. From the above, it is evident that research datasets in these two emerging fields exhibit vastly different data characteristics.
    To address the varying characteristics of different datasets, the study designed three experiments to tackle these challenges. The first experiment aimed to verify the impact of multilingualism on text classification by using deep learning models to classify COVID-19 fake news in different languages. The second experiment examined the effect of feature importance on text classification by developing a fuzzy feature clustering method for COVID-19 fake news detection. The third experiment focused on verifying data imbalance by enhancing data characteristics in TCFD texts using a text augmentation model and applying deep learning classification. To address the black-box problem of deep learning, explainable AI techniques were employed in Experiment 3 to interpret TCFD texts. Lastly, to assess the performance of large language models, the latest models were used for analysis across all three experiments.
    In the results, experiment 1 demonstrated that using the BiLSTM deep learning model achieved high classification accuracy (99% for English and 86% for Chinese). The results of Experiment 2 showed that integrating key features maintained accuracy while significantly reducing detection time (by 10% for English and 15% for Chinese). Experiment 3 indicated that using Generative Adversarial Networks (GANs) for data augmentation to address data imbalance improved classification performance metrics. Explainable AI techniques identified key features influencing model predictions and their relationship with classification outcomes. While large language models did not surpass the performance achieved by deep learning, they still provided strong classification results due to their extensive internal parameters and training data.

    摘要 I Abstract II Acknowledgments IV Content V List of Tables IX List of Figures XI 1. Introduction 1 1.1. Background 1 1.2. Motivation 2 1.3. Purpose 3 2. Related Work 5 2.1. COVID-19 fake news 5 2.2. TCFD 6 2.2.1 Core element 7 2.2.2 Climate-related risks 8 2.2.3 Climate-related opportunities 9 2.3. Deep learning 10 2.4. Fuzzy logic 12 2.4.1 Analysis and modeling techniques 13 2.4.2 Model training method 15 2.4.3 The research topic 17 2.5. Text Augmentation 21 2.6. Explainable AI 22 2.7. Large language model 24 3. Research Methodology 26 3.1 Research architecture 26 3.2 Data preprocessing 27 3.2.1 Data label processing 27 3.2.2 Normalization 27 3.3 Fuzzy clustering 28 3.4 Word embeddings 30 3.4.1 Word frequency method 30 3.4.2 Pre-trained deep learning model method 31 3.5 Deep learning model 32 3.5.1 LSTM 33 3.5.2 BiLSTM 34 3.5.3 GRU 35 3.5.4 BERT 36 3.5.5 RoBERTa 38 3.5.6 ClimateBERT 39 3.6 Data augmentation 40 3.6.1 SeqGAN 41 3.6.2 MaliGAN 44 3.6.3 RankGAN 45 3.7 Explainable AI (XAI) 46 3.7.1 Shapley 47 3.7.2 LIME 48 3.8 Large language model (LLM) 48 3.8.1 Llama3 49 3.8.2 Mistral 50 4. Experimental design and results 52 4.1. Experiment environment 52 4.2. Experiment dataset 52 4.3. Experiment setting and parameters 54 4.3.1. Data analysis method 54 4.3.2. Feature selection method 54 4.3.3. Parameters setting 57 4.4. Evaluation metrics 58 4.5. Experiment results 60 4.5.1. Experiment 1 60 4.5.2. Experiment 2 64 4.5.3. Experiment 3 71 4.5.4. Discussion 75 5. Conclusions 77 5.1. Conclusion 77 5.2. Limitations 78 5.3. Future work 78 References 81

    1. Ahmad, T., Chen, M.Y., Toutanova, K., & Klein, D. (2014). Fuzzy based Sentiment Analysis of Online Product Reviews using Machine Learning Techniques. International Journal of Computer Applications, 99, 9-16.
    2. Ahmed, H., Traoré, I., & Saad, S. (2017). Detection of Online Fake News Using N-Gram Analysis and Machine Learning Techniques. In Proceedings of the ISDDC.
    3. Azhari, M., & Kumar, Y.J. (2017). Improving text summarization using neuro-fuzzy approach. Journal of Information and Telecommunication, 1, 367 - 379.
    4. Almeida, F., & Xexéo, G. (2019). Word Embeddings: A Survey. ArXiv.1901.09069.
    5. Arrieta, A.B., Rodríguez, N.D., Ser, J.D., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2019). Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Information Fusion, 58, 82-115.
    6. Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebr'on, F., & Sanghai, S.K. (2023). GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints. arXiv.2305.13245.
    7. Alhafni, B., Kulkarni, V., Kumar, D., & Raheja, V. (2024). Personalized Text Generation with Fine-Grained Linguistic Control. arXiv.2402.04914.
    8. Babar, S.A., & Patil, P.D. (2015). Improving Performance of Text Summarization. Procedia Computer Science, 46, 354-363.
    9. Basha, S.M., Zhenning, Y., Rajput, D.S., N.Ch.S.N, I., & Caytiles, R.D. (2017). Weighted Fuzzy Rule Based Sentiment Prediction Analysis on Tweets. International Journal of Grid and Distributed Computing, 10, 41-54.
    10. Bewley K, Li Y (2000) Disclosure of environmental information by Canadian manufacturing companies: a voluntary disclosure perspective. Advances in Environmental Accounting & Management, 1(1), 201–226
    11. Bernabé-Moreno, J., Tejeda-Lorente, Á., Herce-Zelaya, J., Porcel, C., & Herrera-Viedma, E.E. (2020). A context-aware embeddings supported method to extract a fuzzy sentiment polarity dictionary. Knowledge-Based Systems, 190, 105236.
    12. Bhushan, N., Sukruta, P., Makarand, S., & Ashish, A. (2023). Descriptive Handwritten Paper Grading System using NLP and Fuzzy Logic. International Journal of Performability Engineering, 19, 273.
    13. Behzadidoost, R., Mahan, F., & Izadkhah, H. (2023). Granular computing-based deep learning for text classification. Information Science., 652, 119746.
    14. Brdnik, S., & Šumak, B. (2024). Current Trends, Challenges and Techniques in XAI Field; A Tertiary Study of XAI Research. In proceeding of the MIPRO, 2032-2038.
    15. Chung, J., Gülçehre, Ç., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv.1412.3555.
    16. Chauhan, S.S., Shet, J.P., Beram, S.M., Jagota, V., Dighriri, M., Ahmad, M.W., Hossain, M., & Rizwan, A. (2023). Rule Based Fuzzy Computing Approach on Self-Supervised Sentiment Polarity Classification with Word Sense Disambiguation in Machine Translation for Hindi Language. ACM Transactions on Asian and Low-Resource Language Information Processing, 22, 1 - 21.
    17. Che, T., Li, Y., Zhang, R., Hjelm, R.D., Li, W., Song, Y., & Bengio, Y. (2017). Maximum-Likelihood Augmented Discrete Generative Adversarial Networks. arXiv.1702.07983.
    18. Chen, T., Su, P., Shang, C., Hill, R., Zhang, H., & Shen, Q. (2019). Sentiment Classification of Drug Reviews Using Fuzzy-rough Feature Selection. In Proceedings of the FUZZ-IEEE, 1-6.
    19. Chaturvedi, I., Satapathy, R., Cavallari, S., & Cambria, E. (2019). Fuzzy commonsense reasoning for multimodal sentiment analysis. Pattern Recognition Letters., 125, 264-270.
    20. Chen, J., Wu, Y., Jia, C., Zheng, H., & Huang, G. (2020). Customizable text generation via conditional text generative adversarial network. Neurocomputing, 416, 125-135.
    21. Choudhary, M., Chouhan, S.S., Pilli, E.S., & Vipparthi, S.K. (2021). BerConvoNet: A deep learning framework for fake news classification. Applied Soft Computing., 110, 107614.
    22. Chen, M., Lai, Y., & Lian, J. (2022). Using Deep Learning Models to Detect Fake News about COVID-19. ACM Transactions on Internet Technology, 23, 1 - 23.
    23. Chen, M., & Lai, Y. (2022). Using Fuzzy Clustering with Deep Learning Models for Detection of COVID-19 Disinformation. Transactions on Asian and Low-Resource Language Information Processing.
    24. Cloutier, N.A., & Japkowicz, N. (2023). Fine-tuned generative LLM oversampling can improve performance over traditional techniques on multiclass imbalanced text classification. In Proceedings of the IEEE BigData, 5181-5186.
    25. Dalal, M.K., & Zaveri, M.A. (2014). Opinion Mining from Online User Reviews Using Fuzzy Linguistic Hedges. Applied Computational Intelligence and Soft Computing, 2014, 735942:1-735942:9.
    26. Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. North American Chapter of the Association for Computational Linguistics, 1, 4171–4186.
    27. Du, J., Vong, C., & Chen, C.L. (2020). Novel Efficient RNN and LSTM-Like Architectures: Recurrent and Gated Broad Learning Systems and Their Applications for Text Classification. IEEE Transactions on Cybernetics, 51, 1586-1597.
    28. Dou, J., Qie, S., Lu, J., & Ren, Y. (2021). Research on Data Generation Model Based on Improved SeqGAN. In Proceedings of the ICSCA, 45-50.
    29. Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A., Goyal, A., Hartshorn, A.S., Yang, A., Mitra, A., Sravankumar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A., …Zhao, Z. (2024). The Llama 3 Herd of Models. arXiv.2407.21783.
    30. Esmaeilzadeh, S., Peh, G.X., & Xu, A. (2019). Neural Abstractive Text Summarization and Fake News Detection. arXiv.1904.00788.
    31. Ellouze, M., Mechti, S., & Belguith, L.H. (2023). A hybrid approach based on linguistic analysis and fuzzy logic to ensure the surveillance of people having paranoid personality disorder towards Covid-19 on social media. International Journal of General Systems, 52, 251 - 274.
    32. Edwards, A., & Camacho-Collados, J. (2024). Language Models for Text Classification: Is In-Context Learning Enough? arXiv.2403.17661.
    33. Fact check rating. Snopes Media Group Inc. Retired from https://www.snopes.com/fact-check-ratings/
    34. Ferreira Caceres, M.M., Sosa, J.P., Lawrence, J.A., Sestacovschi, C., Tidd-Johnson, A., Rasool, M.H., Gadamidi, V.K., Ozair, S., Pandav, K., Cuevas-Lou, C., Parrish, M., Rodriguez, I., & Fernández, J.P. (2022). The impact of misinformation on the COVID-19 pandemic. AIMS Public Health, 9, 262 - 277.
    35. Fatima, N., Daudpota, S.M., Kastrati, Z., Imran, A.S., Hassan, S., & Elmitwally, N.S. (2023). Improving news headline text generation quality through frequent POS-Tag patterns analysis. Engineering Applications of Artificial Intelligence, 125, 106718.
    36. Gobi, N., & Rathinavelu, A. (2019). Analyzing cloud based reviews for product ranking using feature based clustering algorithm. Cluster Computing, 1-8.
    37. Gu, K., Vosoughi, S., & Prioleau, T.O. (2021). SymptomID: A Framework for Rapid Symptom Identification in Pandemics Using News Reports. ACM Transactions on Management Information Systems, 12, 32:1-32:17.
    38. Guo, X., Tian, B., & Tian, X. (2022). HFGNN-Proto: Hesitant Fuzzy Graph Neural Network-Based Prototypical Network for Few-Shot Text Classification. Electronics.
    39. Cofacts Open Datasets. Github. Retrieved Dec 2, 2024 from https://github.com/cofacts/opendata
    40. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9, 1735-1780.
    41. Hasan, H.A., Alassedi, Z., Adile, M., Alsalami, Z., & Hussian, A. (2024). Movie Review Analysis Using Fuzzy Logic-Based Natural Language Processing. In proceedings of the ICSSEECC, 751-756.
    42. Hosain, M.T., Jim, J.R., Mridha, M.F., & Kabir, M.M. (2024). Explainable AI approaches in deep learning: Advancements, applications and challenges. Computers and Electrical Engineering, 117, 109246.
    43. Iantorno, M.S., Muñoz Esquivel, K. (2024). Towards Automatic Document Classification Using a Fuzzy Logic Approach. In proceedings of the SAI, 133-142.
    44. Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., Casas, D.D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., & Sayed, W.E. (2023). Mistral 7B. arXiv.2310.06825.
    45. Kumar, Y.J., Salim, N., Abuobieda, A., & Albaham, A.T. (2014). Multi document summarization based on news components using fuzzy cross-document relations. Applied Soft Computing, 21, 265-279.
    46. Ketsbaia, L., Issac, B., Chen, X., & Jacob, S.M. (2023). A Multi-Stage Machine Learning and Fuzzy Approach to Cyber-Hate Detection. IEEE Access, 11, 56046-56065.
    47. Li, S., & Tsai, F. (2013). A fuzzy conceptualization model for text mining with application in opinion polarity classification. Knowledge Based System, 39, 23-33.
    48. LeCun Y, Bengio Y, Hinton G. (2015). Deep learning. Nature. 521, 436-44.
    49. Lin, K., Li, D., He, X., Sun, M., & Zhang, Z. (2017). Adversarial Ranking for Language Generation. Neural Information Processing Systems.
    50. Liu, H., & Haig, E. (2017). Fuzzy rule based systems for interpretable sentiment analysis. In Proceedings of the ICACI, 129-136.
    51. Lundberg, S.M., & Lee, S. (2017). A Unified Approach to Interpreting Model Predictions. Neural Information Processing Systems.
    52. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv.1907.11692.
    53. Li, B., Hou, Y., & Che, W. (2021). Data Augmentation Approaches in Natural Language Processing: A Survey. AI Open, 3, 71-90.
    54. Li, J., Zhao, W.X., Wei, Z., Yuan, N.J., & Wen, J. (2021). Knowledge-based Review Generation by Coherence Enhanced Text Planning. In Proceedings of the ACM SIGIR, 183-192.
    55. Liu, Z., & Wang, J. (2021). A Cooperative Framework with Generative Adversarial Networks and Entropic Auto-Encoders for Text Generation. In Proceedings of the IJCNN, 1-8.
    56. Lai, Y., & Chen, M. (2023). Review of Survey Research in Fuzzy Approach for Text Mining. IEEE Access, 11, 39635-39649.
    57. Lin, Y., & Chen, Y. (2023). Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model. arXiv.2311.17487.
    58. Liu, Y., Han, T., Ma, S., Zhang, J., Yang, Y., Tian, J., He, H., Li, A., He, M., Liu, Z., Wu, Z., Zhu, D., Li, X., Qiang, N., Shen, D., Liu, T., & Ge, B. (2023). Summary of ChatGPT-Related Research and Perspective Towards the Future of Large Language Models. Meta-Radiology, 1, 100017.
    59. Loukas, L., Stogiannidis, I., Diamantopoulos, O., Malakasiotis, P., & Vassos, S. (2023). Making LLMs Worth Every Penny: Resource-Limited Text Classification in Banking. In Proceedings of the ICAIF.
    60. Luo, W.E., Yue, X., & Zhong, C.T. (2023). Data-to-text Generation with Data Control and Multi-loss Fusion. In Proceedings of the FAIML, 244-247.
    61. Lai, Y., & Chen, M. (2024). Using Natural Language Processing With Explainable AI Approach to Construct a Human-Centric Consumer Application for Financial Climate Disclosures. IEEE Transactions on Consumer Electronics, 70, 1112-1121.
    62. Liu, M., & Shi, G. (2024). PoliPrompt: A High-Performance Cost-Effective LLM-Based Text Classification Framework for Political Science. arXiv.2409.01466.
    63. Liu, M., Zhang, H., Xu, Z., & Ding, K. (2024). The fusion of fuzzy theories and natural language processing: A state-of-the-art survey. Applied Soft Computing., 162, 111818.
    64. Miyamoto, S., Yamazaki, M., & Hashimoto, W. (2009). Fuzzy semi-supervised clustering with target clusters using different additional terms. In Proceedings of the GRC, 444-449.
    65. Morente-Molinera, J.A., Kou, G., Pang, C., Cabrerizo, F.J., Herrera-Viedma, E.E., & Herrera-Viedma, E.E. (2019). An automatic procedure to create fuzzy ontologies from users' opinions using sentiment analysis procedures and multi-granular fuzzy linguistic modelling methods. Information Science, 476, 222-238.
    66. Mugisha, C., & Paik, I. (2023). Bridging the Gap between Medical Tabular Data and NLP Predictive Models: A Fuzzy-Logic-Based Textualization Approach. Electronics.
    67. Nielsen, R. K., Howard, P. N., Brennen, J. S., & Simon, F. M. (2020). Types, sources, and claims of COVID-19 misinformation. Reuters Institute for the Study of Journalism.
    68. O’Dwyer, B., & Unerman, J. (2020). Shifting the focus of sustainability accounting from impacts to risks and dependencies: researching the transformative potential of TCFD reporting. Accounting, Auditing & Accountability Journal.
    69. Pranesh, R.R., Farokhnejad, M., Shekhar, A., & Vargas-Solar, G. (2021). Looking for COVID-19 misinformation in multilingual social media texts. Symposium on Advances in Databases and Information Systems, 72-81.
    70. Papadakis, T., Christou, I.T., Ipektsidis, C., Soldatos, J., & Amicone, A. (2024). Explainable and transparent artificial intelligence for public policymaking. Data & Policy, 6.
    71. Pattanayak, P.K., Tripathy, R.M., & Padhy, S. (2024). A semi-supervised approach of short text topic modeling using embedded fuzzy clustering for Twitter hashtag recommendation. Discover Sustainability.
    72. Pham, L., Hay, D., Miihkinen, A., Myllymäki, E.R., Niemi, L., & Sihvonen, J. (2024). Climate Risk Disclosures and Auditor Expertise. The British Accounting Review, 101439.
    73. Ribeiro, M., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceeding of the ACM SIGKDD, 1135–1144.
    74. Ravi, K., Ravi, V., & Prasad, P. (2017). Fuzzy formal concept analysis based opinion mining for CRM in financial services. Applied. Soft Computing, 60, 786-807.
    75. Rožanec, J.M., Fortuna, B., & Mladenić, D. (2021). Knowledge graph-based rich and confidentiality preserving Explainable Artificial Intelligence (XAI). Information Fusion, 81, 91-102.
    76. Rouzegar, H., & Makrehchi, M. (2024). Enhancing Text Classification through LLM-Driven Active Learning and Human Annotation. arXiv.2406.12114.
    77. Schuster, M. & Paliwal, K. (1997). Bidirectional Recurrent Neural Networks. IEEE Transactions on Signal Processing, 45, 2673-2681.
    78. Salur, M.U., & Aydin, I. (2020). A Novel Hybrid Deep Learning Model for Sentiment Classification. IEEE Access, 8, 58080-58093.
    79. Saeed, W., & Omlin, C.W. (2021). Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities. Knowledge Based System, 263, 110273.
    80. Sharma, D.K., Singh, B., Agarwal, S., Pachauri, N., Alhussan, A.A., & Abdallah, H.A. (2023). Sarcasm Detection over Social Media Platforms Using Hybrid Ensemble Model with Fuzzy Logic. Electronics.
    81. Song, S., & Johnson, A.P. (2023). Predicting Drug Review Polarity Using the Combination Model of Multi-Sense Word Embedding and Fuzzy Latent Dirichlet Allocation (FLDA). IEEE Access, 11, 118538-118546.
    82. Sun, X., Li, X., Li, J., Wu, F., Guo, S., Zhang, T., & Wang, G. (2023). Text Classification via Large Language Models. In Proceedings of the EMNLP.
    83. Sadeghi, Z., Alizadehsani, R., Cifci, M.A., Kausar, S., Rehman, R., Mahanta, P., Bora, P.K., Almasri, A., Alkhawaldeh, R.S., Hussain, S., Alatas, B., Shoeibi, A., Moosaei, H., Hladík, M., Nahavandi, S., & Pardalos, P.M. (2024). A review of Explainable Artificial Intelligence in healthcare. Computers and Electrical Engineering., 118, 109370.
    84. Sharaff, A., Rajput, N., Papatla, S.R. (2024). Unsupervised Sentiment Analysis of Amazon Fine Food Reviews Using Fuzzy Logic. In proceedings of the CoCoLe, 126-137.
    85. Tam, S., Said, R.B., & Tanriöver, Ö.Ö. (2021). A ConvBiLSTM Deep Learning Model-Based Approach for Twitter Sentiment Classification. IEEE Access, 9, 41283-41293.
    86. TASK FORCE ON CLIMATE-RELATED FINANCIAL DISCLOSURES (2022). TASK FORCE ON CLIMATE-RELATED FINANCIAL DISCLOSURES 2022 Status Report. Retrieved Dec 2, 2024 from https://assets.bbhub.io/company/sites/60/2022/10/2022-TCFD-Status-Report.pdf.
    87. Verma, P., Verma, A., & Pal, S. (2022). An approach for extractive text summarization using fuzzy evolutionary and clustering algorithms. Applied Soft Computing, 120, 108670.
    88. What is a content farm?. (2019, September 19). EContnet magazine. Retrieved Dec 2, 2024 from http://www.econtentmag.com/Articles/Resources/Defining-EContent/What-is-a-Content-Farm-78370.htm
    89. Waszak, P., Kasprzycka-Waszak, W. and Kubanek, A. (2018). The spread of medical fake news in social media – The pilot quantitative study. Health Policy and Technology, 7(2), 115-118.
    90. Webersinke, N., Kraus, M., Bingler, J.A., & Leippold, M. (2021). ClimateBert: A Pretrained Language Model for Climate-Related Text. arXiv.2110.12010.
    91. Weber, L., Lapuschkin, S., Binder, A., & Samek, W. (2022). Beyond Explaining: Opportunities and Challenges of XAI-Based Model Improvement. Information Fusion, 92, 154-176.
    92. Wang, Z., Pang, Y., & Lin, Y. (2023). Large Language Models Are Zero-Shot Text Classifiers. arXiv.2312.01044.
    93. Weber, P.M., Carl, K.V., & Hinz, O. (2023). Applications of Explainable Artificial Intelligence in Finance—a systematic review of Finance, Information Systems, and Computer Science literature. Management Review Quarterly, 74, 867-907.
    94. Wang, S., & Xiang, Y. (2024). Research on Data Augmentation Techniques for Text Classification Based on Antonym Replacement and Random Swapping. In Proceedings of the CNMN, 103-108.
    95. Yu, L., Zhang, W., Wang, J., & Yu, Y. (2016). SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. In proceedings of the AAAI, 2852-2858.
    96. Yang, T., Hu, L., Shi, C., Ji, H., Li, X., & Nie, L. (2021). HGAT: Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification. ACM Transactions on Information Systems (TOIS), 39, 1 - 29.
    97. Yadav, A.K., Ranvijay, R., Yadav, R.S., & Kumar, V. (2023). Large text document summarization based on an enhanced fuzzy logic approach. International Journal of Information Technology, 1-14.
    98. Zhu, Y., Lu, S., Zheng, L., Guo, J., Zhang, W., Wang, J., & Yu, Y. (2018). Texygen: A Benchmarking Platform for Text Generation Models. In Proceedings of the ACM SIGIR, 1097-1100.
    99. Zhu, D., Yao, H., Jiang, B., & Peng, Y. (2018). Negative Log Likelihood Ratio Loss for Deep Neural Network Classification. In Proceedings of the FTC. 1069.
    100. Zhou, W. (2022). A Method of Topic Extraction Based on WordTag and LDA. In Proceedings of the ICTIEE,19-23.
    101. Zhu, B., & Pan, W. (2024). Chinese text classification method based on sentence information enhancement and feature fusion. Heliyon, 10.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE