簡易檢索 / 詳目顯示

研究生: 蕭亦娗
Hsiao, Yi-Ting
論文名稱: 探討非等向性材料之排列方式對力學表現的影響—以纖維強化樹脂系統為例
The influence of material’s anisotropy on the mechanical performance – an application of fiber-reinforced composite system
指導教授: 陳永崇
Chen, Yung-Chung
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 105
中文關鍵詞: 纖維強化樹脂非等向性有限元素法音洩法
外文關鍵詞: fibre-reinforced composite, acoustic emission, anisotropic, finite element method
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類的自然牙主要是由牙釉質(enamel)與牙本質(dentin)所構成,兩者之材料特性皆屬於非等向性、非均質。現今牙科廣泛運用的補綴材料如樹脂、陶瓷、氧化鋯等,其材料特性多為均質且等向性的,無法確切地呈現自然牙原本的特性。牙科目前常見具非等向性系統的材料為纖維強化樹脂(fiber-reinforced composite, FRC),臨床上通常應用在固定式局部補綴物(fixed partial denture, FPD),提供了強度與剛性,但現階段仍沒有在單顆牙冠上的臨床應用。
    本研究假設具非等向性的牙科材料且經適當排列可以提升贋復體的力學表現。在有限元素法模擬的模型設計上採用複合材料與人牙牙本質結合,樣本組別以不同纖維緊密排列區分成橫向、縱向兩組。以不銹鋼材質壓頭施予一負載應力以觀察樣本受力的變化。力學測試於萬用材料測試機上採用ball on ring的方式進行並同時施以音洩檢測以了解材料內部結構發生變化的即時狀況。
    模擬結果顯示(一)經由適當排列的實驗組比起對照組其最大主應力結果都有降低的現象(二) 「FRC縱向排列」的組別其應力表現優於「FRC橫向排列」。力學試驗結果顯示:Z350與Dyract flow兩種樹脂製備之「無FRC」之樣本組別,其音洩參數「累積撞擊」、「最大負載」皆優於「含有FRC」之組別。而同樣含有FRC之組別相比,Z350「FRC縱向排列」的結果優於「FRC橫向排列」,Dyract flow組別則無明顯差異。造成數值模擬與力學實驗結果趨勢不同,認為原因其一是來自於樣本製備過程的瑕疵,使得樣本內部含有氣泡,降低整體的強度;其二,由於模擬之數值模型與實際實驗之樣本,纖維的排列緊密程度有差異,造成力學試驗時,含有纖維之樣本,反而比較早破壞。

    The structures of natural teeth are composed of enamel and dentin. Both of them are anisotropic and heterogeneous. The anisotropy of enamel comes from the “hierarchical structure” and the different arrangement of enamel rods. Also the distribution of dentinal tubules and their spatial arrangement make dentin anisotropic. Most dental materials such as resin, ceramic or zirconia are homogeneous and isotropic, which can not fully mimic dentin and enamel. Fiber-reinforced composite (FRC) is one of the materials with anisotropy. It is often used for fabricating the substructure or framework of fixed partial denture (FPD) clinically to enhance mechanical performance. However, FRC system has not been applied on a single crown.
    The present project was divided into two parts: Finite Element Analysis and the in vitro experiment. We hypothesize that the mechanical performance of a structure can be improved by introducing anisotropy of appropriate arrangement. The material properties of FRC composite and human dentin were assigned to the parts. Two models with different FRC arrangements were considered: parallel and vertical to the outer surface. The model with fully anisotropic material properties was set as the control group. An indenter of stainless steel was created as loading apparatus and the pressure load was applied to its top surface. The bottom of the model was fixed and the indenter was confined to move in the vertical direction only. For in vitro experiment, the specimens made by Z350 and Dyract flow were tested using the manner of “ball-on-ring” (BOR) test. Acoustic emission (AE) signals were captured to identify the occurrence of material damage.
    Simulation results showed that the maximum principal stress of both longitudinal and transverse arrangement groups were higher than control groups. And the mechanical performance of longitudinal arrangement groups were better than transverse groups. The results of mechanical tests of “no fiber” groups showed that the cumulative hits were lower and the maximum load were higher of “no fiber” groups were better than “with-fiber” groups. Focused on the with-fiber and groups, Z350-Longitudinal group had better performance than Z350-Transverse group. However, the results of testing groups obtained from Dyract flow group did not show significant difference.
    According to the results, the numerical simulation results were consistent to the hypothesis. While the trend of mechanical experiment results were unmatched to the numerical simulation. The reason of this phenomenon can be attributed to: 1) the preparation of specimen. 2) the difference of material properties. 3) the difference of loaded area in simulation model and test specimens.

    摘要 I EXTEND ABSTRACT II 誌謝 VII 目錄 VIII 圖目錄 X 表目錄 XVI 第一章 緒論 1 1.1 自然牙之材料特性 1 1.1.1牙釉質與牙本質的非等向性 1 1.1.2 等向性與非等向性 3 1.2 複合樹脂之組成、分類與性質 5 1.3 纖維強化樹脂 6 1.3.1 組成、分類與性質 6 1.3.2 纖維強化樹脂於牙科研究之應用 7 1.4 音洩法之介紹 9 1.4.1音洩法之檢測原理與流程 9 1.4.2音洩法之相關參數 10 1.4.3音洩法於牙科研究之應用 12 1.5 動機與目的 14 第二章 材料與方法 15 2.1有限元素分析 16 2.1.1 幾何模型之建立 16 2.1.2 幾何模型之材料性質與邊界條件 17 2.2 實驗設置 19 2.2.1 實驗樣本之製備 19 2.2.2 力學測試之治具設計 22 2.3 音洩系統與破裂訊號之蒐集 23 2.3.1 硬體架設與軟體參數之設定 23 2.3.2 音洩系統之表現驗證 24 2.4 實驗設置與步驟 25 2.4.1 實驗設置 25 2.4.2 實驗步驟流程 26 第三章 結果 27 3.1 有限元素法模擬分析 27 3.2音洩試驗之結果與分析 70 3.2.1 傅立葉轉換 70 3.2.2 累積撞擊(Cumulative hits) 72 3.3 力與位移曲線圖 80 3.4 樣本破裂之觀察 88 第四章 討論 93 4.1 有限元素模擬法分析 93 4.2力學試驗之音洩結果與分析 95 4.2.1 傅立葉轉換 95 4.2.2 累積撞擊(Cumulative hits) 95 4.3 力學試驗之結果與討論 98 4.4 樣本破裂之觀察 100 第五章 結論 102 參考文獻 103

    [1] Mutter, J., Is dental amalgam safe for humans? The opinion of the scientific committee of the European Commission. Journal of Occupational Medicine and Toxicology, 2011. 6(1): p. 2.
    [2] Özcoban, H., E. Yilmaz, and G. Schneider, Hierarchical microcrack model for materials exemplified at enamel. Dental Materials, 2017.
    [3] Eimar, H., et al., Regulation of enamel hardness by its crystallographic dimensions. Acta biomaterialia, 2012. 8(9): p. 3400-3410.
    [4] Hannig, M. and C. Hannig, Nanomaterials in preventive dentistry. Nature nanotechnology, 2010. 5(8): p. 565.
    [5] Misra, A., et al., Parametric study of the effect of phase anisotropy on the micromechanical behaviour of dentin–adhesive interfaces. Journal of The Royal Society Interface, 2005. 2(3): p. 145-157.
    [6] Lee, S., S. Lee, and H. Kim, Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Applied physics letters, 1998. 73(20): p. 2881-2883.
    [7] Busch, K. and S. John, Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum. Physical Review Letters, 1999. 83(5): p. 967.
    [8] Smoot, G.F., M.V. Gorenstein, and R.A. Muller, Detection of anisotropy in the cosmic blackbody radiation. Physical Review Letters, 1977. 39(14): p. 898.
    [9] Knebe, A., et al., Anisotropy in the distribution of satellite galaxy orbits. The Astrophysical Journal, 2004. 603(1): p. 7.
    [10] Cappellari, M., et al., The SAURON project–X. The orbital anisotropy of elliptical and lenticular galaxies: revisiting the (V/σ, ɛ) diagram with integral-field stellar kinematics. Monthly Notices of the Royal Astronomical Society, 2007. 379(2): p. 418-444.
    [11] Javanmardi, B. and P. Kroupa, Anisotropy in the all-sky distribution of galaxy morphological types. Astronomy & Astrophysics, 2017. 597: p. A120.
    [12] Sharafeddin, F., A. Alavi, and Z. Talei, Flexural strength of glass and polyethylene fiber combined with three different composites. Journal of Dentistry, 2013. 14(1): p. 13.
    [13] Caixeta, R.V., et al., Influence of glass-fiber reinforcement on the flexural strength of different resin composites. Applied Adhesion Science, 2015. 3(1): p. 24.
    [14] Doozandeh, M., A.A. Alavi, and Z. Karimizadeh, Flexural Strength Comparison of Silorane-and Methacrylate-Based Composites with Pre-impregnated Glass Fiber. Journal of Dentistry, 2016. 17(2): p. 105.
    [15] Choi, N.-S., J.-U. Gu, and K. Arakawa, Acoustic emission characterization of the marginal disintegration of dental composite restoration. Composites Part A: Applied Science and Manufacturing, 2011. 42(6): p. 604-611.
    [16] Li, H., et al., Non-destructive examination of interfacial debonding using acoustic emission. Dent Mater, 2011. 27(10): p. 964-71.
    [17] Liu, X., et al., An acoustic emission study on interfacial debonding in composite restorations. Dent Mater, 2011. 27(9): p. 934-41.
    [18] Cho, N.Y., J.L. Ferracane, and I.B. Lee, Acoustic emission analysis of tooth-composite interfacial debonding. J Dent Res, 2013. 92(1): p. 76-81.
    [19] Yang, B., et al., Acoustic properties of interfacial debonding and their relationship with shrinkage stress in Class-I restorations. Dental Materials, 2016. 32(6): p. 742-748.
    [20] Fok, A.S., Shrinkage stress development in dental composites—an analytical treatment. Dental Materials, 2013. 29(11): p. 1108-1115.
    [21] Van Ende, A., et al., Strain development in bulk-filled cavities of different depths characterized using a non-destructive acoustic emission approach. Dent Mater, 2017. 33(4): p. e165-e177.
    [22] Yokoyama, D., et al., Effects of mechanical properties of adhesive resin cements on stress distribution in fiber-reinforced composite adhesive fixed partial dentures. Dental materials journal, 2012. 31(2): p. 189-196.
    [23] Melo-Silva, T., et al. Evaluation of Mechanical Properties of Composite Materials Used in Dentistry Varying the Inorganic Composition. in Materials Science Forum. 2015. Trans Tech Publ.
    [24] ASTM E976-15.
    [25] Asaoka, K., K. Yoshida, and K. Sakamaki, Effect of transient stress on acoustic emission behaviour during firing of dental porcelain. Journal of materials science, 1992. 27(11): p. 3118-3122.
    [26] Cheon, D.-S., et al., Evaluation of damage level for rock slopes using acoustic emission technique with waveguides. Engineering Geology, 2011. 121(1-2): p. 75-88.
    [27] Tjandrawinata, R., M. Irie, and K. Suzuki, Flexural properties of eight flowable light-cured restorative materials, in immediate vs 24-hour water storage. Oper Dent, 2005. 30(2): p. 239-249.
    [28] Ilie, N. and R. Hickel, Investigations on mechanical behaviour of dental composites. Clinical oral investigations, 2009. 13(4): p. 427.
    [29] De Souza, J., et al., Fracture resistance curves and toughening mechanisms in polymer based dental composites. Journal of the mechanical behavior of biomedical materials, 2011. 4(4): p. 558-571.

    無法下載圖示 校內:2024-01-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE