| 研究生: |
江威 Jiang, Wei |
|---|---|
| 論文名稱: |
酚醛樹脂/改質蒙脫土奈米複合材料的製備及物性研究 Synthesis and Characterization of Phenolic Resin/Montmorillonite nanocomposites |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 酚醛樹脂 、奈米複合材料 |
| 外文關鍵詞: | nanocomposite, phenolic resin |
| 相關次數: | 點閱:163 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
酚醛樹脂因為有著獨特良好的性質,所以到今天在高技術應用上仍然是不可取代的材料。然而酚醛樹脂卻很少運用在奈米複合材料上面,這是因為酚醛樹脂是三維的結構,所以要插入矽酸鹽層間是一件很困難的事。通常解決這個問題,可由酚醛樹脂種類或複合材料聚合方法做進一步發展。酚醛樹脂種類可使用線性的novolac型酚醛樹脂ヽresol型低分子量酚醛樹脂或resol型酚醛樹脂。而複合材料聚合方法則有In-situ聚合法ヽ溶液中之高分子插層法以及熔融態高分子直接插層法。此外,易脆性和交聯收縮性是阻礙酚醛樹脂應用的兩大缺點,使其在應用上受到限制。故在酚醛樹酯的應用上,增韌為相當重要的一環。
本研究是將resol型酚醛樹脂與數種改質蒙脫土2M2HTMMTヽC18MMTヽ2C18MMTヽB2MPMMTヽB2MHMMT和B3EMMT利用in-suit聚合法分別合成酚醛樹脂/改質蒙脫土奈米複合材料。利用XRD與TEM分別觀察蒙脫土改質程度以及複合材料的結構,得到2M2HTMMT-PF與2C18MMT-PF為插層型複合材料(intercalated nanocomposites)以及C18MMT-PFヽB3EMMT-PFヽB2MPMMT-PF與B2MHMMT-PF為脫層型複合材料(exfoliated nanocomposites)。而從TGA測量得知,B3EMMT-PFヽB2MPMMT-PF與B2MHMMT-PF之改質劑因含有benzyl ring,改質劑與酚醛樹脂有著相似的結構,造成良好的化學相容性,所以跟其他改質劑比起來有良好的熱穩定性。總而言之,改質劑對於熱穩定性(thermal stability)與奈米複合材料最終型態(morphology)上扮演著重要的腳色。另外,本研究藉由導入NBR橡膠來增加酚醛樹酯材料的韌性,摻混後利用拉力機測量發現機械性質能夠提升,但是從TGA與DMA得知,對於熱穩定性的影響不大。
Phenolic resins today are indeed irreplaceable materials for selective high- technology applications, because of their excellent ablative properties. However, phenolic resin has been abandoned in the nanocomposite field. The reason is that general phenolic resin has a threedimensional structure that makes phenolic resin very difficult to intercalate in the layered silicate gallery
In this work, phenolic resin/modified-montmorillonite nanocomposites were synthesized by in-situ polymerization with resol type phenolic resins and organoclays such as 2M2HTMMT, C18MMT, 2C18MMT, B2MPMMT, B2MHMMT, and B3EMMT. XRD measurements and TEM observations showed that clay platelets were exfoliated or intercalated. It is found that 2M2HTMMT-PF and 2C18MMT-PF were intercalated nanocomposites and C18MMT-PF, B3EMMT-PF, B2MPMMT-PF and B2MHMMT-PF were exfoliated nanocomposites. TGA showed the thermal stability of B3EMMT- PF, B2MBMMT-PF, and B2MHMMT-PF were higher than that of C18MMT -PF, 2M2HTMMT-PF and 2C18MMT-PF due to chemical affinity derived from the favorable interaction between the phenolic resin and intercalant containing benzene ring. Conclusively, the modification of layered silicate and the resulting interaction between organic modifier and phenolic resin played an important role in determining the thermal stability and the final morphology of phenolic resin-layered silicate nanocomposite. Phenolic resins were also blended with NBR and the measurements of stress-strain properties, TGA, DMA and TEM. It was observed that the mechanical properties of the blend enhanced on incorporation of NBR into the phenolic resin.
[1] Theng, B.K.G. Formation and Properties of Clay-Polymer Complexes Chapter
1,Amsterdam Oxford New York. 1979.
[2] Yang, R.; Atsushi, T.; Wong, C.P. 8th Int Symp On Adv Packag Mater, 2002,
pp.188-193.
[3] Natitoal Center for Manufacturing Sciences, Embedded Decoupling Capacitance
Project Final Report, NCMS Project No. 160213, 2000.
[4] Sugimoto, W.; Shirata, M.; Sugahara, Y.; Kuroda, K.; J Am Chem Soc, 1999,
121, 11602.
[5] Mills A.; Le Hunte, S. J Photochem Photobiol A: Chem, 1997, 108, 1.
[6] Hagfeldt, A.; Gratzel, M. Acc Chem Res, 2000, 33, 2699.
[7] Akelah, A.; Moet, A.; J Appl Polym Sci: Appl Polymer Symp, 1994, 55, 153.
[8] Messer Smith, P. B.; Giannelis, E. P. Chem Mater, 1994, 16, 1719.
[9] Vaia, R. A.; Giannelis, E. P. Macromolecules, 1997, 30, 8000-8009.
[10] Vaia, R. A.; Jandt, K. D.; Kramer, E. J.; Giannelis, E. P. Macromolecules,
1995, 28, 8080-8085.
[11] Vaia, R. A.; Jandt, K. D.; Kramer, E. J.; Giannelis, E. P. Chem Mater, 1996,
8, 2628-2635.
[12] Saegusa, T. Pure and Appl Chem 1995, 67, 1965.
[13] Novak, B. M. Adv Mater, 1993, 5, 422.
[14] Japanese R&D trend analysis advanced materials-phase VI, Rep. No.1;
Organic-In Organic polymer hybrids, KRI, May 1994.
[15] Wang, J. F.; Merino, J.; Ananda, P.; Galvan, J. C.; J Mater Chem, 1999, 19,
161.
[16] Bremer, L. G. B.; verbong, M. W. C. G.; Webers, M. A. M.; van Doorn, M. A.
M. M. Synth Mat, 1997, 84, 355.
[17] Okada, A.; Usuki, A.; Kurauchi, T.; Kamigaito, O. Hybrid Organic- InOrganic
Composite, ACS Symp Series, 1995, 55, 585.
[18] Depege, C.; Elmetoui, F. E.; Forano, C.; Roy, A. D. Chem Mater, 1996, 8,
952.
[19] Hunter, R. J. Clareden Press Oxford. Foundation of Colloid Science, 1992, 1,
25-31.
[20] Giannelis. E. P.; Krishnamoorti, R.; Manias, E. Adv Polym Sci 1999, 118,
108-147.
[21] Okada, A. et al. Mater Res Soc Proc, 1990, 171, 45.
[22] Lee, D. C. et al. J Appl Polym Sci, 1996, 61, 1117.
[23] Agag, T. et al. Polym, 2000, 42, 3399.
[24] Okada, A. et al. J Polym Sci A: Polym Chem, 1997, 35, 2289.
[25] Chang, F. C. et al. J Appl Polym Sci, 2000, 79, 1902.
[26] Wei, K. H. et al. Chem Mater, 1999, 11, 1942.
[27] Gilman, J. W. et al. SAMPE J, 1997, 33, 40.
[28] 鍾松政,徐錦上,胡志明;中華民國陶業研究學會會刊,第二十一卷第三期,P.36~37.
[29] 李世陽,蔡宗燕;化工科技與商情,第二十四期,2001
[30] Zanetti, M.; Lomakin, S.; Camino, G. Macromol Master Eng 2000, 279, 1-9.
[31] Lebaron, P. C.; Zhen, W.; Thomas, J. P. Applied Clay Science, 1999, vol.15,
pp.11-29.
[32] 蔡宗燕, 黏土奈米層狀材料之應用與開發, 成功大學資源工程研究所專題演講內容,
2000.
[33] Okada, A.; Kawasumi, M.; Kurauchi, T.; Kamigaito, O. Polym Prepr 1981, 28,
447.
[34] Mehrotra, E. P.; Giannelis. Solid State Commun 1991, 77, 155.
[35] Kurauchi, T.; Okada, A.; Nomura, T.; Nishio, T.; Saegua, S.; Deguchi, R. SAE
Technical Paper Ser, 910584, 1991
[36] Giannelis, E. P.; Mehrotra, V.; Tse, O.; Vaia, R. A.; Sung, T. in:
“Synthesis and Processing of Ceramics: Scientific Issues”, MRS Proc.,
Pittsburgh, PA, 1992.
[37] Giannelis, E. P. J Met 1992, 44, 28.
[38] Mehrotra, V.; Giannelis, E. P. Solid Sate Ionics 1992, 51, 115.
[39] Messersmith, P. B.; Giannelis, E. P. Chem Mater 1993, 5, 1064.
[40] Yano, K.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, O. J Polym Sci:
Part A: Polym Chem 1993, 31, 2493.
[41] Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.;
Kamigaito, O. J Mater Res 1993, 8, 1185.
[45] Wang, M. S.; Pinnavaia, T. J. Chem Mater 1994, 6, 468.
[43] Messersmith, P. B.; Giannelis, E. P. Chem Mater 1994, 6, 1719.
[44] Lan, T.; Pinnavaia, T. J. Chem Mater 1994, 6, 2216.
[45] Biasci, L.; Aglietto, M.; Ruggeri, G.; Ciardelli, F. Polymer 1994, 35, 3296.
[46] Messersmith, P. B.; Giannelis, E. P. J Polym Sci: Part A: Polym Chem 1995,
33, 1047.
[47] Biasci, L.; Aglietto, M.; Ruggeri, G.; D’Alessio, A. Polym Adv Technol
1995, 6, 662.
[48] Akelah, A.; Moet, A. J Mat Sci 1996, 31, 3589.
[49] Reichert, P.; Kressler, J.; Tomann, R.; Mu¨lhaupt, R.; Stoppelmann, G. Acta
Polym 1998, 49, 116.
[50] Zilg, C.; Tomann, R.; Mu¨lhaupt, R.; Finter, J. Adv Mater 1999, 11, 49.
[51] Arada, P.; Ruiz-Hitzky, E. Adv Mater 1990, 2, 545.
[52] Arada, P.; Ruiz-Hitzky, E. Chem Mater 1992, 4, 1395.
[53] Wu, J.; Lerner, M. M. Chem Mater 1993, 5, 835.
[54] Tunney, J. J.; Detellier, C. Chem Mater 1996, 8, 927.
[55] Tyan, H. C.; Liu, Y. C.; Wei, K. H. Chem Mater 1999, 10, 1942.
[56] Fischer, H. R.; Gielgens, L. H.; Koster, T. P. M. Acta Polym 1999, 50, 122.
[57] Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem Mater 1993, 5, 1694.
[58] Burnside, S. D.; Giannelis, E. P. Chem Mater 1995, 7, 1596.
[59] Vaia, R. A.; Vasudevan, S.; Krawiec, W.; Scanlon, L. G.; Giannelis, E. P.
Adv Mater 1995, 7, 154.
[60] Vaia, R. A.; Jandt, K. D.; Kramer, E. J.; Giannelis, E. P. Macromolecules
1995, 28, 8080.
[61] Vaia, R. A.; Jandt, K. D.; Kramer, E. J.; Giannelis, E. P. Chem Mater 1996,
8, 2628.
[62] Vaia, R. A.; Giannelis, E. P. Macromolecules 1997, 30, 7990.
[63] Vaia, R. A.; Giannelis, E. P. Macromolecules 1997, 30, 8000.
[64] Kawasumi, M.; Hasegawa, N.; Kato, K.; Usuki, A.; Okada, A. Macromolecules
1997, 30, 6333.
[65] Burnside, S. H.; Wang, H. C.; Giannelis, E. P. Chem Mater 1999, 11, 1055.
[66] Zilg, C.; Mu¨lhaupt, R.; Finter, J. Macromol Chem Phys 1999, 200, 661.
[67] Heieman, J.; Reichert, P.; Thomann, R.; Mu¨lhaupt, R. Macromol Rapid Commun
1999, 20, 423.
[68] Akelah, A.; Moet, A.; J App Polym Sci, App Polym Sym 1994, 55, p.153.
[69] Zilg, C.; Thomann, R.; Miilhaupt, R.; Finter, J. Adv Mater 1999, 11, p.49.
[70] LeBaron, P. C.; Wang, Z. S.; Pinnavaia, T. Appl Clay Sci 1999, 15, p.11.
[71] Usuki, A.; Mizutani, T.; Fukushima, Y.; Fujimoto, M.; Fukomori, K.; Kojima,
Y.; Sato, N.; Kurauchi, T.; Kamikaito, O. U.S. Patent, 889,885 1989.
[72] Choi, M. H.; Chung, I. J.; Lee, J. D. Chem Mater 2000, 12, 2977-2983.
[73] Byun, H. Y.; Choi, M. H.; Chung, I. J. Chem Mater 2001, 13, 4221- 4226.
[74] Wu, Z. G.; Zhou, C, X.; Rongrong, Q. polym composites, Vol. 23, No. 4 2002.
[75] Wang, H. S.; Zhao, T.; Zhi, L. J.; Yan, Y. H.; Yu, Y. Z. Macromol Rapid
Commun 2002, 23, 44-48.
[76] Choi, M. H.; Chung, I. J. Appl Polym Sci 2003, 90, 2316-2321.
[77] Liu, Y. L.; Lin, Y. L.; Chen, C. P.; Jeng, R. J. Appl Polym Sci 2003, 90
4047-4053.
[78] Chiang, C. L.; Ma, C. C. M.; Wu, D. L.; Kuan, H. C. J Polym Sci: Part A:
Polym Chem 2003, 41, 905-913.
[79] Williams, E. P. M.; Seferis, J. C.; Wittman, C. L.; Parker, G. A.; Lee, J.
H.; Nam, J.-D. J Polym Sci: Part B: Polym Phys 2004, 42, 1-4.
[80] Lee, S. M.; Hwang, T. R.; Song, Y. S.; Lee, J. W. Polym Eng Sci 2004, 44,
1170-1177.
[81] Wang, H. S.; Zhao, T.; Yan, Y. H.; Yu, Y. Z.; Appl Polym Sci 2004, 92,
791-797.
[82] Lee, J. W.; Kim, J. Y.; Lee, Y. J.; Yoon, S. H.; Oh, S. M.; Hyeon, T. G.
Chem Mater 2004, 16, 3323-3330.
[83] Chiang, C. L.; Ma, C. C. M. Polym Deg and Stab 2004, 83, 207-214.
[84] Shafizadeh, J. E.; Guionnet, S.; Tillman, M. S.; Seferis, J. C. J Appl Poly
Sci, 1999, 73, 505-514.
[85] Camino, G.; Alba, E.; Buonfico, P.; Vikoulov, K. J Appl Poly Sci, 2001, 82,
1346-1351.
[86] Achary, P. S.; Gouri, C.; Ramaswamy, R. J Appl Poly Sci, 2001, 81,
2597-2608.
[87] Manfredi, L. B.; Riccardi, C. C.; Osa, O.; Vazquez, A. Poly Inter, 2001, 50,
796-802.
[88] Samui, A. B.; Suryavanshi, U. G.; Patri, M.; Chakraborty, B. C.; Deb, P. C.
J Appl Poly Sci, 1998, 68, 255-266.
[89] Sousa, M. F.; Peres, C. C.; Nunes, C. R.; Visconte, L. Y. Furtado, R. G. J
Appl Poly Sci, 2002, 84, 505-513.
[90] Achary, P. S.; Ramaswamy, R. J Appl Poly Sci, 1998, 69, 1187-2101.
[91] Sposito, G.; Prost, R. Chem. Rev. 1982, 82, 553.
[92] Lin, J. J.; Cheng, I. J.; Wang. R.; Lee, R. J. Macromolecules 2001, 34,
8832-8834.
[93] Ouchi, K.; Honda, H. Fuel 1959, 38, 429.