研究生: |
盧庭芳 Lu, Ting-Fang |
---|---|
論文名稱: |
利用雙語本體論完成知識庫查詢方法-以A企業為例 Bilingual Ontology-based Knowledge Query Method ─Examples with A Company |
指導教授: |
王惠嘉
Wang, Hei-Chia |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 本體論 、資訊檢索 |
外文關鍵詞: | Ontology, Information retrieval |
相關次數: | 點閱:129 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著資訊科技的崛起與資料儲存設備的快速發展,紙本文件轉換成電子文件的形式日益增加,以共享檔案形式,將知識內容統一存放在可控平台上,讓人們可直接透過網路或是掃描紙本文件轉為電子格式方式找到自己需求的資訊,使用者可隨時進行查詢自動更新與流動狀態的企業電子文庫,大大提昇吸收知識的便利性。
當公司知識庫內容越來越龐大與豐富時,找尋資料的困擾逐漸突顯出來,雖然有好幾種搜尋工具替我們進行資料篩選,但搜尋的結果卻不一定是使用者期待的內容。現有的搜尋引擎(例如:Windows Desktop Search與 Google Desktop Search)主要根據使用者輸入的查詢字,對於文件內容進行比對,以篩選相對的結果,也就是所謂的關鍵字搜尋系統。但此搜尋模式無法顯示同義字相關資訊,需藉由多次搜尋後才能將完成與主題相關的關鍵字查詢,且無法確認是否查找出完整資訊。
由於現有關鍵字搜尋系統在關鍵字很準確時才有實質的效益,且公司同時保留中、英文文件之下,等同中文查找一次,英文查找一次,有重工的疑慮。
本研究將朝著結合同義不同字查詢技術以建置半自動化的企業ERP庫為目標,收集彙整企業ERP的主題字與特徵詞,由關鍵字為出發點,整合中、英文,觸類旁通找出主題字與重要特徵詞,篩選出特徵詞,以期提升電子文件查詢的完整性,並達到加速知識查詢完整性的成效。
同時,以個案企業的知識庫作為資料來源處理加以實作,並針對實作結果來驗證本研究所提出的方法是否可有效改善原本的知識庫查詢方式,且達成預期目標。最後,本研究提出結論及未來發展。
When the content of the company's knowledge base is more and more large and rich, the search for information problems gradually highlighted, although there are several search tools for our data screening, but the search results are not necessarily the user's expectations.
This study will focus on the combination of synonymous with different word query technology to build semi-automated enterprise ERP library as the goal, to collect the integration of enterprise ERP theme words and feature words, and to explore whether the subject can detect the way to improve the original query method, by the key Word as the starting point, the integration of Chinese and English, touch the next class to find the key words and important feature words, screening out the characteristics of words, in order to enhance the integrity of electronic file query, and to speed up the integrity of knowledge query results.
At the same time, the knowledge base of the case enterprise is taken as the source of the data processing, and the results of the study are used to verify whether the proposed method can effectively improve the original knowledge base query method and achieve the desired goal. Finally, this study concludes and develops the future.
A.Jaya(2011).A Standard Methodology for the Construction of Symptoms Ontology for Diabetes Diagnosis, International Journal of Computer Applications, 14(1), 0975–8881.
Al-Maskari, A. and M. Sanderson (2011). The effect of user characteristics on search effectiveness in information retrieval, Information Processing & Management, 47(5), 719-729.
Blomqvist, E. and A. Ohgren (2008). Constructing an enterprise ontology for an automotive supplier, Engineering Applications of Artificial Intelligence, 21(3): 386-397.
Borges, K. A. V., C. A. Davis, et al. (2010). Ontology-driven discovery of geospatial evidence in web pages, GeoInformatica, 15(4): 609-631.
Cruz IF et al. (2009). AgreementMaker: efficient matching for large real-world schemas and ontologies, International Conference on Very Large Databases. Lyon, France, 1586-1589.
Davenport, T.H., De Long, D.W. & Beers, M. C. (1998). Successful knowledge management projects, Sloan Management Review, 39(2), 43-57.
Filipe Santana, Daniel Schober,Zulma Medeiros,Fred Freitas and Stefan Schulz (2011). Ontology patterns for tabular representations of biomedical knowledge on neglected tropical diseases, Bioinformatics, 27 (12): 1684-1690.
Foo, S. and Li, H. (2004). Chinese word segmentation and its effect on information
retrieval, Information Processing and Management, 40, 161–190.
Georgios Paliouras (2005). On the Need to Bootstrap Ontology Learning
with Extraction Grammar Learning, In Proceedings of the International Conference on Conceptual Structures (ICCS), Kassel, Germany, July, Lecture Notes in Artificial Intelligence, 3596, 119-135, Springer Verlag.
Jongwoo Kim and Veda C. Storey (2011). Construction of Domain Ontologies:Sourcing the World Wide Web, International Journal of Intelligent Information Technologies, 7(2), 1-24.
Gómez-Romero, J., M. A. Patricio, et al. (2011). Ontology-based context representation and reasoning for object tracking and scene interpretation in video, Expert Systems with Applications , 38(6): 7494-7510.
Gruber, T.R. (1993) . A Translation Approach to Portable Ontologies, Knowledge
Acquisition, 5(2), 199-220.
Hsieh, S.-H., H.-T. Lin, et al. (2011). Enabling the development of base domain ontology through extraction of knowledge from engineering domain handbooks, Advanced Engineering Informatics, 25(2): 288-296.
Jung, Y., J. Ryu, et al. (2010). Automatic construction of a large-scale situation
ontology by mining how-to instructions from the web. Web Semantics: Science, Services and Agents on the World Wide Web, 8(2-3): 110-124.
Kamsufoguem, B., T. Coudert, et al. (2008). Knowledge formalization in experience feedback processes: An ontology-based approach, Computers in Industry, 59(7): 694-710.
Khan, M. S., & Khor, S. (2004). Enhanced web document retrieval using automatic query expansion, Journal of the American Society for Information Science and Technology, 55(1), 29–40.
Maedche, A. and Staab, S.(2002) .Measuring Similarity between Ontologies, In
Proceedings of the European Conference on Knowledge Acquisition and
Management, 251–263.
Negnevitsky, M., (2002). Artificial Intelligence, A Guide to Intelligent Systems. Addison-Wesley, Harlow, England; London; New York.
Noy, N.F. and McGuinness, D.L. (2001).Ontology Development 101: A Guide to Creating Your First Ontology, technical report.
Quan, T. T., Hui, S. C. and Fong, A.C.M. (2006). Automatic fuzzy ontology generation for semantic help-desk support, IEEE Transactions on Industrial Informatics, 2(3), 155 – 164,.
Sanchez, D. and A. Moreno (2008). Learning non-taxonomic relationships from web documents for domain ontology construction. Data & Knowledge Engineering, 64(3): 600-623.
Shih, C.-W., M.-Y. Chen, et al. (2011). Enhancement of domain ontology construction using a crystallizing approach. Expert Systems with Applications, 38(6): 7544-7557.
Suchanek, F. M., G. Kasneci, et al. (2008). YAGO: A Large Ontology from Wikipedia and WordNet, Web Semantics: Science, Services and Agents on the World Wide Web, 6(3): 203-217.
Songyun Duan, Achille Fokoue, Kavitha Srinivas and Brian Byrne(2011), A Clustering-Based Approach to Ontology Alignment , Lecture Notes in Computer Science, 7031, 146-161.
S.-H. Chuang(2004). A resource-based perspective on knowledge management capability and competitive advantage: an empirical investigation, Expert Systems with Applications, 27, 459–465.
Weng, S.-S., H.-J. Tsai, et al. (2006). Ontology construction for information classification, Expert Systems with Applications, 31(1): 1-12.
Yessad, A., C. Faron-Zucker, et al. (2011). Ontology-based semantic relatedness for
detecting the relevance of learning resources, Interactive Learning Environments, 19(1), 63-80.
Zhang, G., S. Jia, et al. (2010). REA-based Enterprise Business Domain Ontology Construction, Journal of Software, 5(5).
Martínez-Romero, M., Jonquet, C., O'connor, M. J., Graybeal, J., Pazos, A., & Musen, M. A. (2017), NCBO Ontology Recommender 2.0: an enhanced approach for biomedical ontology recommendation. Journal Of Biomedical Semantics, 81-22. doi:10.1186/s13326-017-0128-y.
FOCŞA, M. A. (2016). An Architectural Approach for Building Medical Ontologies, Applied Medical Informatics, 38(2), 66-72.
Zhuhadar, L. (2015). A synergistic strategy for combining thesaurus-based and corpus-based approaches in building ontology for multilingual search engines, Computers In Human Behavior, 51(Part B), 1107-1115. doi:10.1016/j.chb.2015.03.021.
Dastgheib, M. B., Fakhrahmad, S. M., & Jahromi, M. Z. (2016). A Hybrid Accurate Alignment method for large Persian-English corpus construction based on statistical analysis and Lexicon/Persian Word net, International Journal Of Information Science & Management, 14(2), 97-106.
Chandra, G., & Dwivedi, S. (2017). Assessing query translation quality using back translation in hindi-english CLIR, International Journal Of Intelligent Systems And Applications, 9(3), 51-59. doi:10.5815/ijisa.2017.03.07.
邱漢誠. (2015). 關係社會資本、知識吸收能力與知識分享態度 的關聯—知識管理觀點, Soochow Journal Of Economics & Business, (89), 1-34.
郭巧玲. (2016). 基於知識本體之跨領域地理空間資訊語意互操作框架之發展 , The development of an ontology-based semantic interoperability framework for cross-domain geospatial information, 民105.