| 研究生: |
宋孟真 Sung, Meng-Chen |
|---|---|
| 論文名稱: |
研究人類重組凝血酶調節素與蛋白質 C活化路徑無關的生物功能 The Biological Effects of Human Recombinant Thrombomodulin Proteins Independent of Protein C Activation Pathway |
| 指導教授: |
吳華林
Wu, Hua-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 血管新生 |
| 外文關鍵詞: | Thrombomodulin |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝血酶調節素(Thrombomodulin, TM)是一種表現於血管內皮細胞表面的醣蛋白,是生理上重要的抗凝血因子,其蛋白質結構從氨基端依序被分為類外源凝集素(lectin-like)結構區(TMD1), EGF-like 結構區(TMD2), serine/ threonine-rich結構區(TMD3), transmembrane結構區(TMD4)及碳端的cytoplasmic結構區(TMD5)。 在最近的研究中,凝血酶調節素被指出除了能抗凝血之外,也具有其他的一些生物功能,包含對不同的細胞有 mitogenic的效應; 促進血管新生的活性以及可能參予在胚胎發育的過程。 在之前的研究中,我們發現了不管是在 in vitro或是 in vivo,凝血酶調節素的 domain 2和 3 (TMD23)都可以促進血管新生, 然而 TMD23調控血管新生的詳細機制仍然有待我們去研究。 在這個研究中,我們利用酵母菌表現系統表現 TMD23蛋白,同時我們利用點突變的方法也得到了三種失去了活化蛋白 C路徑的生物功能的 TMD23突變蛋白,接下來我們利用親和性鎳離子螯合樹脂管柱,純化出高純度的TMD23突變蛋白,並且我們利用凝血酶調節素輔因子活性測試分析的實驗證明這些突變的 TMD23蛋白都失去了活化蛋白 C路徑的能力。 接下來我們更進一步的証實這些突變的 TMD23蛋白具有跟wild type TMD23相似的生物活性,這些突變的 TMD23都可以促進人類臍靜脈內皮細胞 (human umbilical vein endothelial cell, HUVEC)的生長, 移動和 tube的形成;並且可以刺激 ERK1/2和 Akt的活化。 除此之外,我們也研究可能調控此功能的候選者;利用修改過的 far Western blotting和 immunoprecipitation - Western blotting分析法,我們發現重組 TMD23蛋白可能會跟人類臍靜脈內皮細胞上的纖維母細胞生長因子接受器 1 ( fibroblast growth factor receptor 1 , FGFR1, Flg)有交互作用,這結果建議我們 TMD23可能是透過像是纖維母細胞生長因子接受器1之類的酪氨酸激酶接受器去調控血管新生。
Thrombomodulin (TM) is a vascular endothelial cell receptor and cofactor in the clinically important protein C anticoagulant system. TM contains five structure domains: N-termianal lectin-like domain (TMD1), EGF-like domain (TMD2), serine and threonine-rich domain (TMD3), transmembrane domain (TMD4), and C-terminal cytoplasmic domain (TMD5). In recent studies, TM domains were shown to have several biological functions beyond anticoagulation including mitogenic effect on various cells, angiogenic activity and the possible participation in the embryogenesis. In our previous studies, the novel angiogenic effects of TM domains 2 and 3 (TMD23) were discovered both in vitro and in vivo. However, the detailed mechanism of TMD23 modulating angiogenesis still remained to be solved. In this study, the Pichica pastoris protein expression system was used to express the recombinant TMD23 and three protein C activation-defected TMD23 mutant proteins using site-direct mutagenesis. The recombinant TMD23 proteins were purified by affinity nickel-chelating column chromatography. TM cofactor activity assay showed that these site-direct mutated proteins lost their protein C activation activity. We further demonstrated that the biological function of the three mutated proteins was similar to that of the wild type TMD23. These three mutants also stimulated proliferation, migration and tube formation of human umbilical vein endothelial cell (HUVEC) in vitro and induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt. We showed that the angiogenic activity of TM is independent of protein C activation pathway. In addition, the function of many candidate mediators was investigated. By modifying far Western blotting assay and immunoprecipitation - Western blotting analysis, we discovered that the recombinant TMD23 protein may interact with fibroblast growth factor receptor 1 (FGFR1; Flg) in HUVECs. These results suggested that TMD23 might act through tyrosyl kinase-like receptors such as FGFR1 to modulate angiogenesis.
1. Esmom C.T., and Owen, G.W., Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc. Natl. Acad. Sci. U. S. A., 78: 249-252. 1981.
2. Esmon N. L., Owen W.G., and Esmon C.T., Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C. J. Biol. Chem., 257: 859-864. 1982.
3. Suzuki, K., et al., Structure and expression of human TM, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO Journal, 6: 1891-1897. 1987.
4. Esmon C.T. et al., Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J. Biol. Chem., 257: 7944-7947. 1982.
5. Owen W.G. et al., Functional properties of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. J. Biol. Chem., 256: 5532-5535. 1981.
6. Sadler J.E., et al., Thrombomodulin structure and function. Thromb. Haemost., 78: 392-395. 1997.
7. Weiler H. and Iserman B. H., Thrombomodulin. J. Thromb. and Haemost., 1: 1515-1524. 2003.
8. Ikuro Maruyama, et al., Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. J. Cell Biology., 101: 363-371. 1985.
9. Takano, S., et al., Plasma thrombomodulin in health and diease. Blood, 76: 2024-2029. 1990.
10. S. Spence McCachren, et al., Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood, 78 (12): 3128-3132. 1991.
11. Shi C S, et al., Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation, 111 (13): 1627-1636. 2005.
12. Conway, E.M., et al., The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood, 89: 652-661. 1997.
13. Conway, E.M., et al., The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor κB and mitogen-activated protein kinase pathway. J. Exp. Med., 196: 565-577. 2002.
14. Van de Wouwer M, Conway, E.M., Novel functions of thrombomodulin in inflammation. Crit Care Med., 32: 254-261. 2004.
15. Van de Wouwer M, Collen D, Conway EM., Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Artrtioscler Thromb Vasc Biol., 24: 1374-1383. 2004.
16. Healy AM, Rayburn HB, Rosenberg RD, Weiler H., Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci USA., 92: 850-854. 1995.
17. Yamamoto S, MIizoguchi T, Tamaki T, Ohkuchi M, Kimura S, Aoki N., Urinary thrombomodulin, its isolation and characterization. J Biochem (Tokyo)., 113: 433-440. 1993.
18. Boehme MWJ, Galle P, Stremmel W., Kinetics of thrombomodulin release and endothelial cell injury by neutrophil-derived proteases and oxygen radicals. Immunology. 107: 340-349. 2002.
19. Salomaa V, Matei C, Aleksic N, Sansores-Garcia L, Folsom AR, Juneja H, Chambless LE, Wu KK., Soluble thrombomodulin as a predictor of incident coronary heart disease and symptom less carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a case-cohort study. Lancet., 353: 1729-1734. 1999.
20. Hamada H, Ishii H, Sakyo K, Horie S, Nishiki K, Kazama M., The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood, 86: 225-233. 1995.
21. Tohda G., Oida K., Okada Y., Kosaka S., Okada E., Takahashi S., Ishii H., Miyamori I., Expression of thrombomodulin in atherosclerotic lesions and mitogenic activity of recombinant thrombomodulin in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol., 18: 1861-1869 1998.
22. Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL., Thrombomodulin-mediated cell adhesion: Involvement of its lectin-like domain. J Biol Chem., 278: 46750-46759. 2003.
23. Uchiba M, Okajima K, Murakami K, Nawa K, Okabe H, Takatsuki K., Recombinant human soluble thrombomodulin reduces endotoxin-induced pulmonary vascular injury via protein C activation in rats. J. Thromb Haemost., 74(5): 1265-1270. 1995.
24. Deborah J. Stearns-Kurosawa, Shinichiro Kurosawa, Jeffery S. Mollica, Gary L. Ferrell, and Charles T. Esmon., The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex. Proc. Natl. Acad. Sci. U. S. A., 93: 10212-10216. 1996.
25. NL Esmon, RC Carroll, and CT Esmon., Thrombomodulin blocks the ability of thrombin to activate platelets. J. Biol. Chem., 258: 12238-12242. 1983.
26. R. Gonzalez, V. Vicente, A. Alegre, P. Pabon and I. Alberca., Protein c and antithrombin III in acute myocardial infarction. Thromb. Res 43: 681-685. 1986.
27. K Fukudome and CT Esmon. Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor. J. Biol. Chem., 269: 26486-26491. 1994.
28. Lisa M. Regan, Deborah J. Stearns-Kurosawa, Shinichiro Kurosawa, Jeff Mollica, Kenji Fukudome, and Charles T. Esmon., The Endothelial Cell Protein C Receptor. INHIBITION OF ACTIVATED PROTEIN C ANTICOAGULANT FUNCTION WITHOUT MODULATION OF REACTION WITH PROTEINASE INHIBITORS. J. Biol. Chem., 271: 17499-17503. 1996.
29. Shinichiro Kurosawa, Deborah J. Stearns-Kurosawa, Noriko Hidari, and Charles T. Esmon., Identification of Functional Endothelial Protein C Receptor in Human Plasma. J. Clin. Invest., 100: 411 - 418. 1997.
30. Patricia C. Y. Liaw, Pierre F. Neuenschwander, Mikhail D. Smirnov, and Charles T. Esmon., Mechanisms by Which Soluble Endothelial Cell Protein C Receptor Modulates Protein C and Activated Protein C Function. J. Biol. Chem., 275: 5447-5452. 2000.
31. B Dahlback, M Carlsson, and PJ Svensson., Familial Thrombophilia Due to a Previously Unrecognized Mechanism Characterized by Poor Anticoagulant Response to Activated Protein C: Prediction of a Cofactor to Activated Protein C. Proc. Natl. Acad. Sci. U. S. A., 90: 1004-1008. 1993.
32. Rogier M., et al., Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature, 369: 64-66. 1994.
33. JH Griffin, B Evatt, C Wideman, and JA Fernandez., Anticoagulant protein C pathway defective in majority of thrombophilic patients. Blood, 82: 1989-1993. 1993.
34. F B Taylor, Jr, A Chang, C T Esmon, A D'Angelo, S Vigano-D'Angelo, and K E Blick., Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. J Clin Invest., 79(3): 918–925. 1987.
35. Taylor, F.B.Jr.; Kinasewitz, G., Activated protein C in sepsis. J. Thromb. Haemost., 2: 708- 717. 2004.
36. Cheng, T.; Liu, D.; Griffin, J.H.; Fernández, J.A.; Castellino, F.; Rosen, E.D.; Fukudome, K.; Zlokovic, B.V., Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and its neuroprotective. Nat. Med., 9: 338-342. 2003.
37. Akio Mizutani, Kenji Okajima, Mitsuhiro Uchiba, and Takayuki Noguchi., Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation. Blood, 95: 3781-3787. 2000.
38. Griffin JH, Zlokovic B, Fernández JA., Activated protein C: Potential therapy for severe sepsis, thrombosis, and stroke. Semin. Hematol., 39: 197-205. 2002.
39. Okajima, K., Prevention of Endothelial Cell Injury by Activated Protein C: The Molecular Mechanism(s) and Therapeutic Implications. Curr. Vasc. Pharmacol., 2: 125-133. 2004.
40. Uchiba M., et al., Effect of human thrombomodulin on endotoxin-induced intravascular coagulation and pulmonary vascular in jury in rats. Am J Hematol, 54: 118-123. 1997.
41. Uchiba M., et al., Recombinant thrombomodulin prevents endotoxin-induced lung injury in rats by inhibiting leukocyte activation. Am J Physiol, 271: 470-475. 1996.
42. L Beck Jr , P A D'Amore., Vascular development: cellular and molecular regulation. FASEB J., 11 (5):365-73 9141503. 1997.
43. Tonini, T., F. Rossi, and P.P. Claudio., Molecular basis of angiogenesis and cancer. Oncogene, 22: 6549-6556. 2003.
44. Folkman, J., Angiogenesis in cancet, vascular, rheumatoid and other disease. Nat Med, 1: 27-31.1995.
45. Liekens, S., E. De Clercq, and J. Neyts., Angiogenesis: regulators and clinical applications. Biochem Pharmacol, 61: 253-270. 2001.
46. Munoz-Chapuli R., Quesada AR., Angel Medina M., Angiogenesis and signal transduction in endothelial cells. Cell Mol. Life Sci. 61: 2224-2243. 2004.
47. Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM., Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol., 237: 97-132. 1999.
48. Ferrara N., Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol. 237: 1-30. 1999.
49. Presta M, Moscatelli D, Joseph-Silverstein J, Rifkin DB., Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNS synthesis, and migration. Mol Cell Biol. 6: 4060-4066. 1986.
50. Bussolino F, Albini A, Camussi G, Presta M, Viglietto G, Ziche M, Persico G., Role of soluble mediators in angiogenesis. Eur J Cancer. 32A: 2401-2412. 1996.
51. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD., Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell. 87: 1161-1169. 1996.
52. Carmeliet. P. et al., Angiogenesis in health and disease. Nat Med, 9: 653-660. 2003.
53. Folkman. J. and Y. Shing, Angiogenesis. J. Biol. Chem. 267: 10931-10934. 1992.
54. Yancopoulos. G.D., et al., Vascular-specific groeth factors and blood vessel formation. Nature, 407: 242-248. 2000.
55. Gary L. Johnson, et al., Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases. Science, 298: 1911-1912. 2002.
56. Rousseau. S., et al., P38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene, 15: 2169-2177. 1997.
57. Kawasaki. K., et al., Activation of the phosphatidylinositol-3-kinase/protein kinase Akt pathway mediates nitric oxide-induce endothelial cell migration and angiogenesis. Mol Cell Biol, 23: 5726-5737. 2003.
58. Mariko Nagashim et al., Alanine-scanning Mutagenesis of the Epidermal Growth Factor-like Domains of Human Thrombomodulin Identifies Critical Residues for Its Cofactor Activity. J. Biol. Chem., 268(4): 2888-2892. 1993.
59. Alexander. C.M., et al., Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet, 25: 329-332. 2000.
60. Horowitz. A., et al., Fibroblast growth factor-specific modulation of cellular response by syndecan-4. J Cell Biol., 157: 715-725. 2003.
61. Goldfarb M., Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Rev, 7: 311–325. 1996.
62. Martin GM., The roles of FGF in the early development of vertebrate limbs. Genes Dev, 12: 1571–1586. 1998.
63. Muenke M, Schell U., Fibroblast-growth factor receptor mutations in human skeletal disorders. Trends Genet, 8: 308–313. 1995.
64. Naski MC, Ornitz DM., FGF signaling in skeletal development. Front Biosci, 3: 781–794. 1998.
65. Ornitz DM, Marie PJ., FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev, 16: 1447–1465. 2002.
66. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM., Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell, 64: 841–848. 1991.
67. Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RK, Mohammadi M., Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell, 6: 743–750. 2000.
68. J. Schlessinger, 2000. Signaling by receptor tyrosine kinases. Cell, 103: 211-225.
69. Johnson DE, Williams LT., Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res, 60: 1–41. 1993.
70. Bastaki M, Nelli EE, Dell’Era P, Rusnati M, Molinari-Tosatti MP, Parolini S, et al., Basic fibroblast growth factor-induced angiogenic phenotype in mouse endothelium. A study of aortic and microvascular endothelial cell lines. Arterioscler Thromb Vasc Biol, 17: 454–464. 1997.
71. Javerzat S, Auguste P, Bikfalvi A., The role of fibroblast growth factors in vascular development. Trends Mol Med, 8: 483–489. 2002.
72. Dell’Era P, Belleri M, Stabile H, Massardi ML, Ribatti D, Presta M., Paracrine and autocrine effects of fibroblast growth factor-4 in endothelial cells. Oncogene, 20: 2655–2663. 2001.
73. Yamaguchi TP, Harpal K, Henkemeyer M, Rossant J., fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev, 8: 3030–3044. 1994.
74. Deng C, Bedford M, Li C, Xu X, Yang X, Dunmore J, Leder P., Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. Dev Biol, 185: 42–54. 1997.
75. M. Nguyen, J. Arkell, C.J. Jackson, Activated protein C directly activates human endothelial gelatinase A. J. Biol. Chem., 275: 9095–9098. 2000.
76. Mitsuhiro Uchiba, et al., Activated Protein C Induces Endothelial Cell Proliferation by Mitogen-Activated Protein Kinase Activation In Vitro and Angiogenesis In Vivo. Circ. Res., 95: 34-41. 2004.
77. Meilang Xue, et al., Activated protein C stimulates expression of angiogenic factors in human skin cells, angiogenesis in the chick embryo and cutaneous wound healing in rodents. Clinical Hemorheology and Microcirculation. 34: 153–161 2006.
78. Ciruna BG, Schwartz L, Harpal K, Yamaguchi TP, Rossant J., Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development. 124(14): 2829-2841. 1997.
校內:2106-07-26公開