| 研究生: |
曾怡婷 Zeng, Yi-Ting |
|---|---|
| 論文名稱: |
探討蝦類Ras及其下游路徑在感染白點症病毒後代謝路徑轉移過程中所扮演之角色 The role of Ras and its downstream pathway in the metabolic reprogramming of WSSV infected shrimp |
| 指導教授: |
王涵青
Wang, Han-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 白點症病毒 、瓦氏效應 、RAS 、Salirasib 、PI3K 、p4EBP1 |
| 外文關鍵詞: | White spot syndrome virus, Warburg effect, Ras, Salirasib, PI3K, p4EBP1 |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
白點症病毒(white spot syndrome virus,WSSV)近年來造成蝦類養殖產業經濟重大損失,因此了解其致病機轉日趨重要。先前實驗室研究發現WSSV感染白蝦後會誘發代謝路徑改變,產生類似於癌症細胞之瓦氏效應(Warburg effect),其特點有細胞大量攝取葡萄糖及乳糖累積細胞外。已知PI3K/Akt/mTOR訊息傳遞路徑能夠調控WSSV所誘發之瓦氏效應,但是否有其他宿主因子會影響此路徑,目前尚不清楚。Ras在人類癌症中為重要致癌基因,具有不同的異形體,其中又以K-Ras最為常見。本篇研究在白蝦中得到兩種K-Ras異構型,分別為RAS1及RAS2,並發現在基因體複製期(12 hpi)及晚期(24 hpi),RAS1/2之基因表現量及RAS之活性均有顯著提升。此外,RAS/ERK以及PI3K/Ak路徑於病毒感染後有活化現象。為了解Ras對於病毒複製之重要性,我們以Ras抑制劑Salirasib抑制Ras或以雙股RNA進行基因默化實驗。預處理Ras抑制劑造成WSSV基因體複製數及VP28基因表現量降低;而在分別處理RAS1/2雙股RNA後,VP28基因表現量皆有顯著降低,但WSSV基因體複製數僅有在靜默化RAS2的蝦隻中有顯著降低。總結本研究所得,RAS在基因體複製時期WSSV誘導之瓦氏效應及病毒複製中相當重要。
The White Spot Syndrome Virus (WSSV) has caused huge economic losses in the shrimp-farming industry all around the world. In previous studies, metabolic changes occurred in WSSV-infected shrimp resembling the Warburg effect (present in some cancer cells), namely increases in glucose consumption and plasma lactate concentrations at the replication stage (12 hpi). Although the Warburg effect can be regulated by a PI3K/Akt/mTOR pathway, how WSSV affects that pathway is unknown. Ras is a critical oncogene in human cancers, with K-Ras being the most common. We identified two types of K-Ras (designated RAS1 and RAS2) in L. vannamei and determined that gene expression of RAS1/2 was significantly increased after WSSV infection (12 and 24 hpi). Moreover, PI3K/Akt and RAS/ERK pathways were activated after WSSV infection. To determine importance of Ras in WSSV replication, studies were conducted to suppress Ras with Salirasib or silence Ras with dsRNA. Pre-treatment with inhibitor caused significant, dose-dependent decreases in WSSV genome copies. Moreover, after dsRNA treatment, at a late stage (24 hpi), there were decreases in gene expression of VP28, but viral genome copy number only decreased in RAS2-silenicng shrimp. We concluded that RAS was crucial in triggering WSSV-induced Warburg effect at the viral genome replication stage (12 hpi) and had an important role during WSSV replication.
Bir, J., Howlader, P., Ray, S., Sultana, S., Khalil Ibrahim, S.M., and Banu, G. R. A critical review on White Spot Syndrome Virus (WSSV): A potential threat to shrimp farming in Bangladesh and some Asian countries. International Journal of Microbiology and Mycology 6, 39-48, 2017.
Blum, R., Jacob-Hirsch, J., Amariglio, N., Rechavi, G. and Kloog, Y. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1 alpha, causing glycolysis shutdown and cell death. Cancer Research 3, 999-1006, 2005.
Bonni, A., Brunet, A., West, A. E., Datta, S. R., Takasu, M. A., and Greenberg, M. E. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358-62, 1999.
Chen, I. T., Aoki, T., Huang, Y. T., Hirono, I., Chen, T. C., Huang, J. Y., Chang, G. D., Lo, C. F. and Wang, H. C. White Spot Syndrome Virus Induces Metabolic Changes Resembling the Warburg Effect in Shrimp Hemocytes in the Early Stage of Infection. Journal of Virology 24, 12919-12928, 2011.
Corbel, V., Zeprizal, Shi, Z., Huang, C., Sumartono, Arcier, J. M. and Bonami, J. R. Experimental infection of European crustaceans with white spo syndrome
virus (WSSV). Journal of Fish Diseases 24, 377-382.
Chesney, J., and Telang, S. Regulation of glycolytic and mitochondrial metabolism by ras. Current Pharmaceutical Biotechnology 14, 251-260, 2013.
Chou, H. Y., Huang, C. Y., Wang, C. H., Chiang, H. C. and Lo, C. F. Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Diseases of Aquatic Organisms 3, 165-173, 1995.
Courtnay, R., Ngo, D. C., Malik, N., Ververis, K., Tortorella, S. M., and Karagiannis, T. C. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Molecular Biology Reports 42, 841-851, 2015.
Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J., and Der, C. J. Drugging the undruggable RAS: Mission possible? Nature Reviews Drug Discovery 13, 828-51, 2014.
Delgado, T., Carroll, P. A., Punjabi, A. S., Margineantu, D., Hockenbery, D. M. and Lagunoff, M. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 23, 10696-10701, 2010.
Downward, J. Targeting ras signalling pathways in cancer therapy. Nature Reviews Cancer 1, 11-22, 2003.
Dunn, E. F. and Connor, J. H. Dominant Inhibition of Akt/Protein Kinase B Signaling by the Matrix Protein of a Negative-Strand RNA Virus. Journal of Virology 1, 422-431, 2011.
Escobedo-Bonilla, C. M., Alday-Sanz, V., Wille, M., Sorgeloos, P., Pensaert, M. B. and Nauwynck, H. J. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. Journal of Fish Diseases 1, 1-18, 2008.
Feng, Y. H., and Tsao, C. J. Emerging role of microRNA-21 in cancer. Biomedical Reports 5, 395-402, 2016.
Fernández-Medarde, A., and Santos, E. Ras in cancer and developmental diseases. Genes and Cancer 2, 344-358, 2011.
Gao, J., Liao, J., and Yang, G. Y. CAAX-box protein, prenylation process and carcinogenesis. American Journal of Translational Research 25, 312-325, 2009.
Hancock, J. F. Ras proteins: Different signals from different locations. Nature Reviews Molecular Cell Biology 5, 373-384, 2003.
Hay, N. and Sonenberg, N. Upstream and downstream of mTOR. Genes and Development 16, 1926-1945, 2004.
Heiden, M. G. V., Cantley, L. C. and Thompson, C. B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 5930, 1029-1033, 2009.
Hennig, A., Markwart, R., Esparza-Franco, M. A., Ladds, G., and Rubio, I. Ras activation revisited: role of GEF and GAP systems. The Journal of Biological Chemistry 396, 831-48, 2015.
Hobbs, G. A., Der, C.J. and Rossman, K. L. RAS isoforms and mutations in cancer at a glance. Journal of Cell Science 129, 1287-1292, 2016.
Hong-Brown, L. Q., Brown, C. R., Navaratnarajah, M. and Lang, C. H. Activation of AMPK/TSC2/PLD by Alcohol Regulates mTORC1 and mTORC2 Assembly in C2C12 Myocytes. Alcoholism-Clinical and Experimental Research 11, 1849-1861, 2013.
Hong, S. Y., Yu, F. X., Luo, Y., and Hagen, T. Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein. Cell Signaling Technology 119, 2356-2367, 2018.
Johnson, R. F. and Perkins, N. D. Nuclear factor-kappa B, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends in Biochemical Sciences 8, 317-324, 2012.
Leu, J. H., Chang, C. C., Wu, J. L., Hsu, C. W., Hirono, I., Aoki, T., Juan, H. F., Lo, C. F., Kou, G. H. and Huang, H. C. Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. Bioorganic and Medicinal Chemistry Genomics 8, 120, 2007.
Leu, J. H., Tsai, J.M., Wang, H. C., Wang, A. H., Wang, C. H., Kou, G. H., and Lo, C.F. The unique stacked rings n the nucleocapsid of the shite spot syndrome virus virion are formed by the major structural protein VP664, the largest viral structural protein ever found. Journal of Virology 79, 140-149, 2005.
Liu, F., Yang, X., Geng, M., and Huang, M. Targeting ERK, an Achilles' Heel of the MAPK pathway, in cancer therapy. Acta Pharmaceutica Sinica B 8, 552-562, 2018.
Lo, C. F., Leu, J. H., Ho, C. H., Chen, C. H., Peng, S. E., Chen, Y. T., Chou, C. M., Yeh, P. Y., Huang, C. J., Chou, H. Y., Wang, C. H. and Kou, G. H. Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. Diseases of Aquatic Organisms 25, 133-141, 1996.
Ma, T., Patel, H., Babapoor-Farrokhran, S., Franklin, R., Semenza, G. L., Sodhi, A., and Montaner, S. KSHV induces aerobic glycolysis and angiogenesis through HIF-1-dependent upregulation of pyruvate kinase 2 in Kaposi's sarcoma. Angiogenesis 18, 477-488, 2015.
Magden, J., Kääriäinen, L., and Ahola, T. Inhibitors of virus replication: recent developments and prospects. Applied Microbiology and Biotechnology 66, 612-621, 2005.
Mamane, Y., Petroulakis, E., Rong, L. W., Yoshida, K., Ler, L. W. and Sonenberg, N. eIF4E - from translation to transformation. Oncogene 18, 3172-3179, 2004.
Mannova, P. and Beretta, L. Activation of the N-Ras-PI3K-Akt-mTOR pathway by hepatitis C virus: Control of cell survival and viral replication. Journal of Virology 14, 8742-8749, 2005.
Mazurek, S. Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells. International Journal of Biochemistry and Cell Biology 7, 969-980, 2011.
Mendoza, M. C., Er, E. E. and Blenis, J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends in Biochemical Sciences 6, 320-328, 2011.
Munger, J., Bajad, S. U., Coller, H. A., Shenk, T., and Rabinowitz, J. D. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLOS Pathogens 2, e132, 2006.
Nave, B. T., Ouwens, D. M., Withers, D. J., Alessi, D. R. and Shepherd, P. R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochemical Journal 427-431, 1999.
Nunan L. M., Poulos, B. T., and Lightner, D. V. The detection of White Spot Syndrome Virus (WSSV) and Yellow Head Virus (YHV) in imported commodity shrimp. Aquaculture 160, 19-30, 1998.
Pan, W., Bodempudi, V., Esfandyari, T., and Farassati, F. Utilizing Ras Signaling Pathway to Direct Selective Replication of Herpes Simplex Virus-1. PLoS ONE 4, e6514, 2009.
Porta, C., Paglino, C., and Mosca, A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Frontiers in Oncology 4, 64, 2014.
Ramos-Carreño, S., Valencia-Yáñez, R., Correa-Sandoval, F., Ruíz-García, N., Díaz-Herrera, F., and Giffard-Mena, I. White spot syndrome virus (WSSV) infection in shrimp (Litopenaeus vannamei) exposed to low and high salinity. Archives of Virology 159, 2213-2222, 2014.
Sánchez-Paz, A. White spot syndrome virus: an overview on an emergent concern. Veterinary Research 41, 43, 2010.
Samatar A. A., and Poulikakos P. I. Targeting RAS-ERK signalling in cancer: promises and challenges. Nature Reviews Drug Discovery 13, 928-942, 2014
Santarpia, L., Lippman, S. M., and El-Naggar, A. K. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets 16, 103-119, 2012.
Shaw, R. J. and Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424-430, 2006.
She, Q. B., Halilovic, E., Ye, Q., Zhen, W., Shirasawa, S., Sasazuki, T., Solit, D. B., and Rosen, N. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18, 39-51, 2010.
Song, R., Tian, K., Wang, W., and Wang, L. P53 suppresses cell proliferation, metastasis, and angiogenesis of osteosarcoma through inhibition of the PI3K/AKT/mTOR pathway. International Journal of Surgery 20, 80-87, 2015.
Steelman, L. S., Chappell, W. H., Abrams, S. L., Kempf, R. C., Long, J., Laidler, P., Mijatovic, S., Maksimovic-Ivanic, D., Stivala, F., Mazzarino, M. C., Donia, M., Fagone, P., Malaponte, G., Nicoletti, F., Libra, M., Milella, M., Tafuri, A., Bonati, A., Bäsecke, J., Cocco, L., Evangelisti, C., Martelli, A. M., Montalto, G., Cervello, M., and McCubrey, J. A. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 3, 192-222, 2011
Su, M. A., Huang, Y. T., Chen, I. T., Lee, D. Y., Hsieh, Y. C., Li, C. Y., Ng, T. H., Liang, S. Y., Lin, S. Y., Huang, S. W., Chiang, Y. A., Yu, H. T., Khoo, K. H., Chang, G. D., Lo, C. F. and Wang, H. C. An Invertebrate Warburg Effect: A Shrimp Virus Achieves Successful Replication by Altering the Host Metabolome via the PI3K-Akt-mTOR Pathway. PLoS Pathogens 6, e1004196, 2014.
Tanner, L. B., Goglia, A. G., Wei, M. H., Sehgal, T., Parsons, L. R., Park, J. O., White, E., Toettcher, J. E., and Rabinowitz, J. D. Four Key Steps Control Glycolytic Flux in Mammalian Cells. Cell Systems 7, 49-62, 2018.
Tilton, C., Clippinger, A. J., Maguire, T. and Alwine, J. C. Human Cytomegalovirus Induces Multiple Means To Combat Reactive Oxygen Species. Journal of Virology 23, 12585-12593, 2011.
Walker, P. J. and Mohan, C. V. Viral disease emergence in shrimp aquaculture: origins, impact and the effectiveness of health management strategies. Reviews in Aquaculture 2, 125-154, 2009.
Wang, J. C., Li, G. Y., Li, P. P., Sun, X., Li, W. M., Li, Y. L., Lu, S. Y., and Liu, P. J. Suppression of hypoxia-induced excessive angiogenesis by metformin via elevating tumor blood perfusion. Oncotarget 8, 73892-73904, 2017.
Warburg, O. Origin of Cancer Cells. Science 3191, 309-314, 1956.
Wittinghofer, A., and Pai, E. F. The structure of Ras protein: a model for a universal molecular switch. Trends in Biochemical Sciences 16, 382-387, 1991.
Wullschleger, S., Loewith, R. and Hall, M. N. TOR signaling in growth and metabolism. Cell 3, 471-484, 2006.
Yang, X., Cheng, Y., Li, P., Tao, J., Deng, X., Zhang, X., Gu, M., Lu, Q., and Yin, C. A lentiviral sponge for miRNA-21 diminishes aerobic glycolysis in bladder cancer T24 cells via the PTEN/PI3K/AKT/mTOR axis. Tumour Biology 36, 383-391, 2015.
Yeung, S. J., Pand, J., and Lee, M.-H. Roles of p53, Myc and HIF-1 in Regulating Glycolysis – theSeventh Hallmark of Cancer. Cellular and Molecular Life Sciences 65, 3981, 2008.
Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E., Locasale, J. W., Son, J., Zhang, H., Coloff, J. L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J. H., Lim, C., Guimaraes, A. R., Martin, E. S., Chang, J., Hezel, A. F., Perry, S. R., Hu, J., Gan, B., Xiao, Y., Asara, J. M., Weissleder, R., Wang, Y. A., Chin, L., Cantley, L. C. and DePinho, R. A. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 3, 656-670, 2012.
Yu, Y., Clippinger, A. J., and Alwine, J. C. Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection. Trends in Microbiology 19, 360-367, 2011.
Zhang, X., Huang, C., Tang, X., Zhuang, Y., and Hew, C. L. Identification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE-MS. PROTEINS: Structure, Function, and Bioinformatics 55, 229-235.
校內:2023-08-22公開