| 研究生: |
黃柏華 Huang, Bo-Hua |
|---|---|
| 論文名稱: |
鈷與鎳磷硫配位化合物產生氫氣的探討及其合成與鑑定 Synthesis and Characterization of Cobalt and Nickel Thiolate Complexes for Hydrogen evolution |
| 指導教授: |
許鏵芬
Hsu, Hua-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 磷硫配位基 、鈷硫錯合物 、鎳硫錯合物 、雙核鎳硫錯合物 、釋放氫氣 |
| 外文關鍵詞: | thiolatophosphine ligands, cobalt thiolate complex, nickel thiolate complex, hydrogen evolution |
| 相關次數: | 點閱:190 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在再生能源中,使用第一列過度金屬為高效率催化劑將質子還原成氫氣的研究是很大的挑戰。第一列過度金屬為理想的催化劑由於在地球上是高含量且低成本的金屬。基於此動機,我們的目標是發展鈷與鎳金屬催化劑來催化質子形成氫氣。在此研究中,我們使用三芽磷硫配位基[PS2”]H2來探討鈷與鎳金屬的化學(PS2”H2 = [P(C6H5)(C6H3-3-Me3Si-2-SH)2])。鎳二價物質與[PS2"]H2反應得到鎳二價錯合物[NiII(PSSH”)2] (1),錯合物1經由X-光單晶繞射儀、紫外-可見光-進紅外光光譜、電噴灑游離質譜以及核磁共振光譜進行分析與鑑定。此外我們還發現錯合物1與氧氣反應後可以得到[NiIV(PS2”)2] (2)。錯合物2經由X-光單晶繞射儀、紫外-可見光-進紅外光光譜、核磁共振光譜以及循環伏安法進行分析與鑑定。將錯合物1照光後可以得到錯合物2而且釋放出氫氣,此部分使用氣相層析儀與電噴灑質譜證明。鎳二價物質與[PS2"]H2反應得到雙核鎳二價錯合物[NiII(PS2”)2]2 (3),錯合物3經由X-光單晶繞射儀、紫外-可見光-進紅外光光譜以及核磁共振光譜進行分析與鑑定。鈷二價物質與[PS2”]H2反應得到鈷三價錯合物[PPh4][Co(PS2”)2] (4)。錯合物4經由X-光單晶繞射儀、元素分析儀、紫外-可見光-進紅外光光譜、電噴灑游離質譜、核磁共振光譜以及循環伏安法進行分析與鑑定。
A challenge to produce dihydrogen for renewable energy is to develop high efficient catalysts for proton reduction. The first-row transition metal complexes are ideal catalysts due to their low cost and high abundance in the earth. Based on this motivation, we have been aiming on develop nickel and cobalt catalysts that carry the reduction of proton to dihydrogen. In this study, bis(benzenethiolato)phosphine ligand derivative, [PS2”]H2 (PS2”H2 = [P(C6H5)(C6H3-3-Me3Si-2-SH)2]) was used to explore nickel and cobalt chemistry. A nickel(II) thiolate complex, [NiII(PSSH”)2] (1), was obtained by the reaction of nickel(II) species with [PS2”]H2. Complex 1 was characterized by X-ray crystallography, UV-vis-NIR spectrum, ESI-MS spectrum and NMR spectrum. Furthermore, complex 1 was found to react with oxygen and produce a nickel(IV) species, [NiIV(PS2”)2] (2). Complex 2 was characterized by X-ray crystallography, UV-vis-NIR spectrum, NMR spectrum and cyclic voltammetry. Importantly, the irradiation of complex 1 produced dihydrogen that was identified by gas chromatography. On the same time, complex 1 was changed to complex 2 that was characterized by ESI-MS spectrum. A dinickel(II) thiolate complex, [NiII(PS2”)2]2 (3), was obtained by the reaction of nickel(II) species with [PS2”]H2. The complex 3 was characterized by X-ray crystallography, UV-vis-NIR spectrum and NMR spectrum. A cobalt(III) thiolate complex, [PPh4][Co(PS2”)2] (4), was obtained by the reaction of cobalt(II) species with [PS2”]H2. The complex 4 was characterized by X-ray crystallography, element analysis, UV-vis-NIR spectrum, ESI-MS spectrum, NMR spectrum and cyclic voltammetry.
1 Stiebritz, M. T. and M. Reiher. Theoretical Study of Dioxygen Induced Inhibition of [FeFe]-Hydrogenase. Inorganic Chemistry 2009, 48 (15), 7127-7140.
2 Muthiah, K. A. T.; Durgaprasad, G.; Xie, Z.-L.; Williams, O. M.; Joseph, C.; Lynch, V. M.; Rose, M. J., Mononuclear Iron(II) Dicarbonyls Derived from NNS Ligands – Structural Models Related to a “Pre-Acyl” Active Site of Mono-Iron (Hmd) Hydrogenase. European Journal of Inorganic Chemistry 2015, 2015 (10), 1675-1691.
3 Wright, J. A.; Turrell, P. J.; Pickett, C. J., The Third Hydrogenase: More Natural Organometallics. Organometallics 2010, 29 (23), 6146-6156.
4 Lamle, S. E.; Albracht, S. P. J.; Armstrong, F. A., The Mechanism of Activation of a [NiFe]-Hydrogenase by Electrons, Hydrogen, and Carbon Monoxide. Journal of the American Chemical Society 2005, 127 (18), 6595-6604.
5 Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E., Hydrogenases. Chemical Reviews 2014, 114 (8), 4081-4148.
6 Wang, N.; Wang, M.; Chen, L.; Sun, L., Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Dalton Transactions 2013, 42 (34), 12059-12071.
7 Siegbahn, P. E. M.; Tye, J. W.; Hall, M. B., Computational Studies of [NiFe] and [FeFe] Hydrogenases. Chemical Reviews 2007, 107 (10), 4414-4435.
8 Morvan, D.; Capon, J.-F.; Gloaguen, F.; Le Goff, A.; Marchivie, M.; Michaud, F.; Schollhammer, P.; Talarmin, J.; Yaouanc, J.-J.; Pichon, R.; Kervarec, N., N-Heterocyclic Carbene Ligands in Nonsymmetric Diiron Models of Hydrogenase Active Sites. Organometallics 2007, 26 (8), 2042-2052.
9 Camara, J. M.; Rauchfuss, T. B., Mild Redox Complementation Enables H2 Activation by [FeFe]-Hydrogenase Models. Journal of the American Chemical Society 2011, 133 (21), 8098-8101.
10 Almazahreh, L. R.; Apfel, U.-P.; Imhof, W.; Rudolph, M.; Görls, H.; Talarmin, J.; Schollhammer, P.; El-khateeb, M.; Weigand, W., A Novel [FeFe] Hydrogenase Model with a (SCH2)2P═O Moiety. Organometallics 2013, 32 (16), 4523-4530.
11 Li, Z.; Ohki, Y.; Tatsumi, K., Dithiolato-Bridged Dinuclear Iron−Nickel Complexes [Fe(CO)2(CN)2(μ-SCH2CH2CH2S)Ni(S2CNR2)]- Modeling the Active Site of [NiFe] Hydrogenase. Journal of the American Chemical Society 2005, 127 (25), 8950-8951.
12 Barton, B. E.; Whaley, C. M.; Rauchfuss, T. B.; Gray, D. L., Nickel−Iron Dithiolato Hydrides Relevant to the [NiFe]-Hydrogenase Active Site. Journal of the American Chemical Society 2009, 131 (20), 6942-6943.
13 Manor, B. C.; Rauchfuss, T. B., Hydrogen Activation by Biomimetic [NiFe]-Hydrogenase Model Containing Protected Cyanide Cofactors. Journal of the American Chemical Society 2013, 135 (32), 11895-11900.
14 Royer, A. M.; Salomone-Stagni, M.; Rauchfuss, T. B.; Meyer-Klaucke, W., Iron Acyl Thiolato Carbonyls: Structural Models for the Active Site of the [Fe]-Hydrogenase (Hmd). Journal of the American Chemical Society 2010, 132 (47), 16997-17003.
15 Song, L.-C.; Xie, Z.-J.; Wang, M.-M.; Zhao, G.-Y.; Song, H.-B., Biomimetic Models for the Active Site of [Fe]Hydrogenase Featuring an Acylmethyl(hydroxymethyl)pyridine Ligand. Inorganic Chemistry 2012, 51 (14), 7466-7468.
16 Han, Z.; Shen, L.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R., Nickel Pyridinethiolate Complexes as Catalysts for the Light-Driven Production of Hydrogen from Aqueous Solutions in Noble-Metal-Free Systems. Journal of the American Chemical Society 2013, 135 (39), 14659-14669.
17 McNamara, W. R.; Han, Z.; Yin, C.-J.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R., Cobalt-dithiolene complexes for the photocatalytic and electrocatalytic reduction of protons in aqueous solutions. Proceedings of the National Academy of Sciences 2012, 109 (39), 15594-15599.
18 Gan, L.; Groy, T. L.; Tarakeshwar, P.; Mazinani, S. K. S.; Shearer, J.; Mujica, V.; Jones, A. K., A Nickel Phosphine Complex as a Fast and Efficient Hydrogen Production Catalyst. Journal of the American Chemical Society 2015, 137 (3), 1109-1115.
19 Jing, X.; Wu, P.; Liu, X.; Yang, L.; He, C.; Duan, C., Light-driven hydrogen evolution with a nickel thiosemicarbazone redox catalyst featuring NiH interactions under basic conditions. New Journal of Chemistry 2015, 39 (2), 1051-1059.
20 Lee, C.-M.; Chiou, T.-W.; Chen, H.-H.; Chiang, C.-Y.; Kuo, T.-S.; Liaw, W.-F., Mononuclear Ni(II)-Thiolate Complexes with Pendant Thiol and Dinuclear Ni(III/II)-Thiolate Complexes with Ni•••Ni Interaction Regulated by the Oxidation Levels of Nickels and the Coordinated Ligands. Inorganic Chemistry 2007, 46 (21), 8913-8923.
21 Uhl, W.; Melle, S.; Frenking, G.; Hartmann, M., Reaction of Ni2Cp2(μ-CO)2 with the Alkylgallium(I) and Alkylindium(I) Compounds E4[C(SiMe3)3]4 (E = Ga, In). Insertion of E−R Groups into the Ni−Ni Bond versus Replacement of CO by the Isolobal E−R Ligands. Inorganic Chemistry 2001, 40 (4), 750-755.
22 Ignatyev, I. S.; Schaefer, H. F.; King, R. B.; Brown, S. T., Binuclear Homoleptic Nickel Carbonyls: Incorporation of Ni−Ni Single, Double, and Triple Bonds, Ni2(CO)x (x = 5, 6, 7). Journal of the American Chemical Society 2000, 122 (9), 1989-1994.
校內:2020-08-06公開