簡易檢索 / 詳目顯示

研究生: 龔士林
Kung, Shih-ling (Ted)
論文名稱: 應用中子電測及電阻電測資料製作擬合成震波圖
Pseudo-Synthetic Seismograms from Neutron and Resistivity Logs
指導教授: 陸喬克
Lewis, Charles
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 113
中文關鍵詞: 複合式轉換孔隙率測錄井孔地球物理擬聲波測錄
外文關鍵詞: Composite transform, Porosity log, Borehole geophysics, Pseudo-sonic log
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當井孔電測資料缺乏聲波測錄資料時,應用直接交錯圖法,將其他電測資料轉換成擬聲波測錄資料,例如將中子電測資料轉換成擬聲波測錄資料,或將電阻電測資料轉換成擬聲波測錄資料,是製作擬聲波資料常用的方法。有了擬聲波資料,地球物理師便可以製作擬合成震波圖。然而,如此製造出來的擬合成震波圖,與使用聲波測錄資料製作的標準合成震波圖常不一致,因為在將中子電測資料轉換成擬聲波資料時沒有修正天然氣效應,或在將電阻資料轉換成擬聲波資料時沒有修正油氣效應。
    本論文應用台灣地區一口井的井測資料:補償式中子電測(CNL)、補償式聲波測錄(BHC)、及正短距電阻電測(SN),詳細研究補償式中子電測與補償式聲波電測測錄曲線關係,及正短距電阻電測與補償式聲波電測測錄曲線關係,由文獻資料收集它們的半經驗式關係,而發展出一種依照地層頂部來做分段式的轉換,在每一段的轉換中,將有天然氣效應或油氣效應的地層自資料序列中全部移出,而另以不同的轉換方程式來轉換,然後再將各轉換的資料連結起來(複合式轉換)。
    經由複合式轉換成的擬聲波測錄資料,與經由傳統式轉換成的擬聲波測錄資料,分別製作擬合成震波圖,然後與標準合成震波圖比對。結果,經由複合式轉換成的擬聲波測錄在做成擬合成震波圖後,無論從頻率、震幅、與波形極性各方面來比對,均比由傳統轉換所生成的擬聲波資料所製作的擬合成震波圖,更類似標準合成震波圖。
    在本研究中,特別將校正井所得出的複合式轉換方程式,應用到附近地區兩口沒有聲波測錄的測驗井,將其井測資料製作成擬聲波測錄資料,然後將製作出來的擬合成震波圖與經過該井的震測線作比對,以盲測本研究所獲得的新方法的有效性,比對的結果,證明其效果非常令人滿意。在本研究中,亦應用一口美國堪薩斯州的井測資料,以本研究所發展的方法製作擬合成震波圖,證明複合式轉換交錯圖法亦可應用於碳酸岩等地層複雜的地區。
    應用本研究的結果(複合式轉換交錯圖法),可以改善傳統交錯圖法缺乏油氣校正的缺失。在成熟或半成熟的油氣探勘、開發地區,常有井測資料缺乏聲波測錄資料,或聲波測錄資料品質不好而無法使用的情形,此時可以應用本研究所發展出的新方法,將中子電測資料或正短距電阻資料轉換成擬合成聲波資料,然後製作擬合成震波圖,幫助該區域的震測解釋工作,提高鑽探的成功率。

    The direct cross-plotting technique that involves a graph of resistivity or neutron log data versus sonic log data is often used to create a pseudo-sonic log. With the resulting transform, a pseudo-synthetic seismogram can then be generated to aid seismic interpreters. However, pseudo-synthetic seismograms generated in this way often do not match the standard synthetic seismograms (made from the sonic and density logs) if either the “gas effect” for the neutron log versus the sonic log cross-plot or the “hydrocarbon effect” for the resistivity log versus the sonic log cross-plot is not corrected.
    The compensated neutron log (CNL) and the short normal resistivity log (SN) were carefully compared to a borehole-compensated sonic log (BHC) from the same well in Taiwan. Semi-empirical relationships from CNL versus BHC and SN versus BHC plots were reviewed from the literature. Then, we developed a method to transform a neutron log into a pseudo-sonic log and a resistivity log into a pseudo-sonic log by splicing together several continuous sections of the best-fit line functions according to formation tops. Additionally, sandstones in which the gas effect or hydrocarbon effect caused the data to be scattered were separately plotted.
    The presented examples show that the new method produces a pseudo-sonic curve that would generate the pseudo-synthetic seismogram most similar to the standard synthetic seismogram according to frequency, amplitude and polarity.
    Blind tests in northwestern Taiwan were performed in two wells to test the effectiveness of the new techniques, and the results were good. The method has also been proven to be applicable in carbonate-dominated log sections, as evidenced by application of the techniques to a well in Kansas, USA.
    The techniques presented in this dissertation can be used to improve the conventional transform of a neutron log into a pseudo-sonic log or a resistivity log into a pseudo-sonic log by employing the direct cross-plotting technique. This, in turn, may be particularly useful for oil and gas exploratory and development areas where neutron logs or resistivity logs are more prevalent than sonic logs.

    Contents Abstract -------------------------------------------------------------------------------------------------1 Abstract (Chinese) -------------------------------------------------------------------------------------3 Acknowledgement s-----------------------------------------------------------------------------------5 Contents -------------------------------------------------------------------------------------------------7 1. Introduction -------------------------------------------------------------------------------------15 1.1 Background ----------------------------------------------------------------------------------15 1.2 Literature review ----------------------------------------------------------------------------17 1.3 Scope of study and objectives -------------------------------------------------------------23 1.4 Methods --------------------------------------------------------------------------------------24 2. Synthetic seismograms and pseudo-synthetic seismograms -----------------------------25 3. Pseudo-synthetic seismograms from the neutron log in clastic geological settings------------------------------------------------------------------------------------------29 3.1 Basics and “pros and cons” of the direct cross-plot technique ------------------------29 3.2 Empirical results and concepts ------------------------------------------------------------31 3.3 A blind test for a pseudo-synthetic seismogram from a neutron log in a clastic geological setting ----------------------------------------------------------------------------34 3.4 Summary of pseudo-synthetic seismograms generated from a neutron log in a clastic geological setting--------------------------------------------------------------------38 4. Pseudo-synthetic seismograms from the resistivity log in clastic geological settings ------------------------------------------------------------------------------------------------------40 4.1 Basics and “pros and cons” of the direct cross-plot technique ------------------------40 4.2 Empirical results and concepts ------------------------------------------------------------41 4.3 A blind test for a pseudo-synthetic seismogram from a neutron log in a clastic geological setting ----------------------------------------------------------------------------44 4.4 Summary of pseudo-synthetic seismograms generated from a resistivity log in a clastic geological setting -------------------------------------------------------------------47 5. Pseudo-synthetic seismograms from neutron and resistivity logs in carbonate areas------------------------------------------------------------------------------------------------50 5.1 Selection of well for study -----------------------------------------------------------------50 5.2 Pseudo-synthetic seismograms from a neutron log in a carbonate area -------------54 5.3 Composite cross-plot methods for transforming a neutron log -----------------------60 5.4 Comparison of results of the pseudo-synthetics generated from a CNLS Log -------------------------------------------------------------------------------------------------68 5.5 Discussion of construction of pseudo-synthetic seismograms from a neutron log in a carbonate section -----------------------------------------------------------------------73 5.6 Pseudo-synthetic seismograms from a resistivity log in a carbonate area -----------75 5.7 Comparison of results of the pseudo-synthetics generated from a Rilm log -------------------------------------------------------------------------------------------------81 5.8 Discussion of construction of pseudo-synthetic seismograms from a resistivity log in a carbonate section ----------------------------------------------------------------------83 6. Wavelet and amplitude effects on synthetic and pseudo-synthetic seismograms---------86 7. Conclusions --------------------------------------------------------------------------------------100 8. Suggestions ---------------------------------------------------------------------------------------104 9. References ----------------------------------------------------------------------------------------105 List of Tables Table 3.2.1 Environmental factors which affect the inter-relationships between CNL apparent porosity and BHC ITT curves ----------------------------------33 Table 4.2.1 Environmental factors which affect the inter-relationships between SN resistivity and sonic ITT curves --------------------------------------------------43 Table 5.1.1 Southwest Kansas Stratigraphy --------------------------------------------------52 Table 6.1 The effects of amplitude and frequency on the pseudo-synthetic seismogram generated from a CNLS (neutron) log ----------------------------88 Table 6.2 The effects of amplitude and frequency on the pseudo-synthetic seismogram generated from a Rilm (resistivity) log ---------------------------94 List of Figures Figure 3.3.1 Pseudo-synthetic seismogram of the U-25 Well -----------------------------36 Figure 3.3.2 Blind test of the composite transform method using a neutron log and equations calibrated from the K-4 Well ---------------------------------------37 Figure 4.3.1 Pseudo-synthetic seismogram of the K-3 Well -------------------------------46 Figure 4.3.2 Blind test of composite transform method using a resistivity log and equations calibrated from the K-4 Well ---------------------------------------47 Figure 5.1.1 Examples of log display of Kansas Well --------------------------------------53 Figure 5.2.1 Cross-plot of DT values versus CNLS porosity values from logs of Kansas Well ----------------------------------------------------------------------55 Figure 5.2.2 “Conventional” synthetic seismogram generated from the DT log and the CDL log of Kansas Well --------------------------------------57 Figure 5.2.3 Pseudo-synthetic seismogram generated from the CDL log and the CNLS log of Kansas Well by direct cross-plotting method -------------------------58 Figure 5.2.4 Comparison between the standard synthetic seismogram made from the DT and the density logs and the linear pseudo-synthetic seismogram made from the CNLS and density logs of Kansas Well------59 Figure 5.3.1 Gas effects on logs from a permeable carbonate zone in the Kansas Well---------------------------------------------------------------------------------61 Figure 5.3.2 Cross-plot of CNLS vs. DT for Zone A of the Kansas Well----------------63 Figure 5.3.3 Cross-plot of CNLS vs. DT for Zone B of the Kansas Well----------------64 Figure 5.3.4 Cross-plot of CNLS vs. DT for Zone C of the Kansas Well ---------------64 Figure 5.3.5 Cross-plot of CNLS vs. DT for Zone D of the Kansas Well ---------------65 Figure 5.3.6 Cross-plot of CNLS vs. DT for gaseous beds in Zone E of the Kansas Well ---------------------------------------------------------------------------------65 Figure 5.3.7 Cross-plot of CNLS vs. DT for other data (exclusive of gaseous beds) in Zone E of the Kansas Well ------------------------------------------------------66 Figure 5.3.8 Pseudo-synthetic seismogram of the Kansas Well generated from the density log and the pseudo-DT log by the composite transform method --------------------------------------------------------------------------------------67 Figure 5.4.1 Comparison between the standard synthetic seismogram made from the DT and density logs and the linear pseudo-synthetic seismogram made from the CNLS and density logs of the Kansas Well -----------------69 Figure 5.4.2 Comparison between the normal polarity waveforms of the standard synthetic seismogram and the composite (spliced) pseudo-synthetic seismogram with gas correction of the Kansas Well -------------------------71 Figure 5.6.1 Cross-plot of DT values versus Rilm resistivity values from the logs of Kansas Well --------------------------------------------------------------------75 Figure 5.6.2 Pseudo-synthetic seismogram of the Kansas Well generated from CDL log and Rilm resistivity log with a linear transform -----------------------76 Figure 5.6.3 Cross-plot of Rilm vs. DT for Zone A of the Kansas Well -----------------77 Figure 5.6.4 Cross-plot of Rilm vs. DT for Zone B of the Kansas Well -----------------78 Figure 5.6.5 Cross-plot of Rilm vs. DT for Zone C of the Kansas Well -----------------78 Figure 5.6.6 Cross-plot of Rilm vs. DT for Zone D of the Kansas Well -----------------79 Figure 5.6.7 Cross-plot of Rilm vs. DT for Zone E of the Kansas Well -----------------79 Figure 5.6.8 Pseudo-synthetic seismogram of the Kansas Well generated from the density log and the pseudo-DT log derived from the Rilm resistivity log by the composite transform method -------------------------------------------80 Figure 5.7.1 Comparison between the standard seismogram and two pseudo-synthetics of the Kansas Well -----------------------------------------82 Figure 5.8.1 Rilm log response in a gas zone of the Kansas Well-------------------------85 Figure 6.1 Pseudo-synthetic seismogram generated from the density log (CDL) and the pseudo-DT log transformed from CNLS log (neutron) by the composite transform method AF1------------------------------------------------89 Figure 6.2 Pseudo-synthetic seismogram generated from the density log (CDL) and the pseudo-DT log transformed from CNLS log (neutron) by the composite transform method AF2 -----------------------------------------------90 Figure 6.3 Pseudo-synthetic seismogram generated from the density log (CDL) and the pseudo-DT log transformed from the CNLS log (neutron) by the composite transform method AF3 -----------------------------------------------91 Figure 6.4 Pseudo-synthetic seismogram generated from the density log (CDL) and the pseudo-DT log transformed from the CNLS log (neutron) by the the composite transform method AF4 -------------------------------------------92 Figure 6.5 Pseudo-synthetic seismogram generated from the density log (CDL) and the pseudo-DT log transformed from the CNLS log (neutron) by the composite transform method AF5 -----------------------------------------------93 Figure 6.6 Pseudo-synthetic seismogram generated from the density log (CDL) and the pseudo-DT log transformed from the Rilm log (resistivity) by the composite transform method AF1 -----------------------------------------------95 Figure 6.7 Pseudo-synthetic seismogram generated from the density log (CDL) and the pseudo-DT log transformed from the Rilm log (resistivity) by the composite transform method AF2 -----------------------------------------------96 Figure 6.8 Pseudo-synthetic seismogram generated from the density log (CDL) and the pseudo-DT log transformed from the Rilm log ( resistivity) by the composite transform method AF3 -----------------------------------------------97 Figure 6.9 Pseudo-synthetic seismogram generated from the density log (CDL) and the pseudo-DT log transformed from the Rilm log (resistivity) by the composite transform method AF4 -----------------------------------------------98 Figure 6.10 Pseudo-synthetic seismogram generated from the density log (CDL) and the pseudo-DT log transformed from the Rilm log (resistivity) by the composite transform method AF5 ----------------------------------------------99 Appendix I. Abbreviations--------------------------------------

    Acevedo H. and Pennington W. D., 2003, Porosity and Lithology Prediction at Caballos Formation in the Puerto Colon Oil Field in Putumayo, Colombia, The Leading Edge, Society of Exploration Geophysics, pp. 1135- 41.
    Alberty, M., 1994, The Influence of the Borehole Environment Upon Compressional Sonic Logs, 1994 SPWLA 35th Annual Logging Symposium: June 19-22, 17 p.

    Archie, G. E., 1942, The Electrical Resistivity Log as an Aid in Determining Some Formation Characteristics. Journal of Petroleum Technology 5, pp.54-62.

    Asquith, G. B., and Gibson, C. R., 1982, Basic Well Log Analysis for Geologists, AAPG Publications Tulsa, Oklahoma 216 p.

    Boyer, S. and Mari, J.-L., 1997, Seismic Surveying and Well Logging: Oil and Gas Exploration Techniques, Editions Technip, Paris, 192 p.

    Brito Dos Santos, W.L., Ulrych, T.J., De Lima, O. A.L., 1988, A New Approach for Deriving Pseudo-Velocity Logs from Resistivity Logs. Geophysical Prospecting, 36, pp. 83-91.

    Chung, H. S., 1974, Direct Computing Seismic Velocity Through Formations from Sonic Logging Data, Petroleum Geology of Taiwan, No. 11, pp. 239-253

    Cline, W. M. 1989, Measured Logs vs. Calculated Logs for Seismic Interpretation. Oil & Gas Journal, Oct. 3, OGJ SPECIAL, pp. 52-56.

    Coffeen, J. A., 1986, Seismic Exploration Fundamentals, Second Edition –Seismic Techniques for Finding Oil, PennWell Books, Tulsa, Oklahoma, pp. 347.

    Crain E. R., 2007a, Seismic Petrophysics 1 Editing and Modeling Logs Chapter Twenty-One Crain’s Petrophysical Handbook on CD-ROM c 1978-2007 E R (Ross) Crain, P. Eng., Rocky Mountain House, Alberta Canada ,T4T 2A2.

    Crain, E. R., 2007b, Electrical and Spontaneous Potential Logs on CD-ROM c 1978-2007 E R (Ross) Crain, P. Eng., Rocky Mountain House, Alberta Canada, T4T 2A2.

    Doveton, J. H., 1999, Basics of Oil and Gas Log Analysis, Section 2, Kansas Geological Survey.
    http://www.kgs.ku.edu/PRS/Info/pdf/doveton2.PDF

    Faust, L.Y., 1951, Seismic Velocity as a Function of Depth and Geological Time. Geophysics, 16, pp.192-206.

    Faust, L.Y., 1953, A Velocity Function Including Lithologic Variation. Geophysics, 18, pp.271-287.

    GS Software Inc., 2001, GS Version 4.1 User’s Manual, Bradenton, Florida

    Henderson Petrophysics, 2008, Some Causes for Bad Sonic Logs and Some Editing Options, 9p.
    http://www.hendersonpetrophysics.com/sonic_w_frames.html, re-accessed on April 20, 2012.

    Holmes, M., Holmes, D., Antony Holmes, A., Digital Formation, Inc., 2003, Generating Missing Logs-Techniques and Pitfalls, AAPG Annual Convention, Salt Lake City, May 11-14, 6 pp.

    Hyne, N., 1983, Well Log Response Chart; PennWell Maps, Tulsa, Oklahoma, Sheet 1.
    Jacobsen, S. and Everett, B., 1991, Log Interpretation Strategies in Gas Wells,
    Spring, Oilfield Review.

    Kansas Geological Survey, 2007, LAS file Database, Comments to webadmin@kgs.ku.edu
    Program Updated Sept. 2007
    Data added periodically.
    URL = http://www.kgs.ku.edu/Magellan/Logs/index.html

    Kim, D. Y., 1964, Synthetic Velocity Log, 33rd Annual International SEG Meeting,
    New Orleans.

    Kung, S. L., Lewis, C., Wu, J. C., 2013, A Technique for Improving Pseudo-Synthetic Seismograms Generated from Neutron Logs in Gas-Saturated Clastic Rocks, Journal of Geophysics and Engineering, Volume 10, No. 3, 10 pp.

    Kung, S. L., Lewis, C., Wu, J. C., 2014, A Resistivity Log-Derived and Gas-Corrected Pseudo-Synthetic Seismogram: Application to the Fanpokeng Gas Field of northwestern Taiwan, New Zealand Journal of Geology and Geophysics, Volume 57, Issue 1, pp. 21-31.

    Kuang, M.Y., Wu, S.C.S., 1986, Hydrocarbon Potential in Western Taiwan: Petroleum Geology of Taiwan, No. 22, pp. 201-226.

    Lee, M.W., 1999, Methods of Generating Synthetic Acoustic Logs from Resistivity Logs of Gas-Hydrate-Bearing Sediments: U.S. Geological Survey Bulletin 2170.
    http://greenwood.cr.usgs.gov/pub/bulletins/b2170/index.html
    re-accessed on April 20, 2012.

    Macfarlane, P. A., Whittemore, D. O., Townsend, M. A., Doveton, J. H., Hamilton, V. J., Coyle III,W. G., Wade, A., Macpherson, G. L., and Black ,R. D., 1989 ,Survey Open-File Rept. 90-27 The Dakota Aquifer Program Annual Report, FY89--Appendix C. 37p.
    http://www.kgs.ku.edu/Dakota/vol3/fy89/app_c.htm
    re-accessed January 22nd, 2012.

    Merriam, D. F., 1963, The Geologic History of Kansas, originally published in 1963
    as Kansas Geological Survey Bulletin 162.
    http://www.kgs.ku.edu/Publications/Bulletins/162/index.html
    accessed on May 22nd, 2014.

    Nau, R. F., 2005, What is a good value of r-squared? 6 pp.
    Website: http://www.duke.edu/~rnau/rsquared.htm, accessed May 2nd, 2011.

    Newell, K. D., Sawin, R. S. and Brady, L. L., 2012, Natural Gas from Coal In Eastern Kansas, Kansas Geological Survey, Web version revised May 2012
    http://www.kgs.ku.edu/Publications/pic19/pic19_1.html
    accessed on May 24th, 2014.

    Rudman, A. J., Whaley, J. F., Blakely, R. F. and Biggs, M. E., 1975, Transformation of Resistivity to Pseudo-velocity Logs, AAPG Bulletin, Vol. 59, No. 7, pp. 1151-1165.

    Schlumberger 1972a, Log Interpretation: Volume 1-Principles Houston, Schlumberger Well Services, Inc. Houston, 113 p.
    Schlumberger, 1972b, The Essentials of Log Interpretation Practice, Schlumberger
    Well Services, Inc. Houston, 58 p.

    Smith, J. H., 2007, A Method for Calculating Pseudo Sonics from E-Log in a Clastic Geologic Setting, Gulf Coast Association of Geological Societies Transactions 57, pp.1-4.

    Smith, J. H., 2011, Pseudo-Sonic, Synthetics and the Lay of the Land SIPES QUARTERLY March No. 1179, pp. 30-33.

    Walls, J., Dvorkin, J., 2004, Well Logs and Rock Physics in Seismic Reservoir Characterization, Matt Carr Rock Solid Images, 7 pp.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE