| 研究生: |
戴覺非 Dai, Chueh-Fei |
|---|---|
| 論文名稱: |
使用金/F4-TCNQ/五環素結構提升有機薄膜電晶體的載子注入效率 Using Au/F4-TCNQ/Pentacene for Ohmic Contacts to Enhance Carrier Injection in Pentacene-Based OTFTs |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 有機薄膜電晶體 、五環素 、F4-TCNQ 、通道電阻 、摻入層 |
| 外文關鍵詞: | organic thin film transistors, pentacene, F4-TCNQ, contact resistance, insert layer |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將探討五環素有機薄膜電晶體主動層與源極/汲極電極之間導入F4-TCNQ緩衝層並以退火製程來最佳化元件特性。實驗結果顯示,當F4-TCNQ厚度為1 nm時,飽和電流、臨界電壓、載子遷移率和接觸電阻都能夠有最明顯的改善程度。經過退火製程的元件特性,與未經退火製程的元件比較,載子移動率從0.42 cm2/Vs 提升至1.08 cm2/Vs,最大飽和汲極電流從12 μA提升至30 μA,接觸電阻也從0.25 MΩ降低至0.11 MΩ。元件特性的提升可歸因於五環素薄膜與金之間的高注入能障得以排除,導致接觸電阻下降和有機薄膜電晶體通道電阻的減少,分別藉由接觸電阻量測與四點探針量測證實。
In this study, the F4-TCNQ film inserted between pentacene and gold to improve the transistor performance has been presented.
From the experimental results, the performance of the transistors in terms of the saturation current, mobility, threshold voltage, and contact resistance could be improved by inserting optimal 1nm-thick F4-TCNQ films. Through the post-annealing process, the mobility of device with pentacene/F4-TCNQ/Au contact could be further improved from 0.42 cm2/Vs to 1.08 cm2/Vs, the maximum saturation current also increased from 12 μA to 30 μA, while the contact resistance decreased from 0.25 MΩ to 0.11 MΩ, as compared to those without post-annealing. The enhancement in device performance could be ascribed the reduction of contact resistance resulting from the elimination of large injection barrier height at pentacene/Au interface and lowering of the channel resistance, as confirmed by the transmission line method (TLM) and four point probe measurement, respectively.
1. M. Pope and C.E. Swenberg, “Electronic Processes in Organic Crystals and Polymers,” Oxford University Press, New York, 1999.
2. D.F. Barbe and C.R. Westgate ”Surface state parameters of metal-free phthalocyanine single crystals,” J. Phys. Chem. Solids, 31, 2679, 1970.
3. M.L. Petrova and L.D. Rozenshtein, “Field effect in the organic semiconductor chloranil. Fiz. Tverd. Tela,” Soviet Phys. Solid State 12, 961, 1970.
4. F. Ebisawa, T. Kurokawa, and S. Nara “Electrical properties of polyacetylene-polysiloxane interface,” J. Appl. Phys., 54, 3255, 1983.
5. D. Guo, K. Sakamoto, K. Miki, S. Ikeda, and K. Saiki, “Orientation control of pentacene molecules and transport anisotropy of the thin film transistors by photoaligned polyimide film,” Appl. Phys. Lett., 90, 102117, 2007.
6. A. Tsumura, K. Koezuka, and T. Ando ”Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett., 49, 1210, 1986.
7. D. Kahng, M. M. Atalla, “Silicon-silicon dioxide field induced surface devices” IRE Solid-State Devices Research Conference, Carnegie Institute of Technology, Pittsburgh, PA, 1960.
8. K. E. Paul, W. S. Wong, S. E. Ready, and R. A. Street, 2003, “Additive jet printing of polymer thin-film transistors”, Appl. Phys. Lett., Vol. 83, No. 10.
9. J. Park, S. Y. Park, S. O. Shim, H. Kang, and H. H. Lee, 2004, “A polymer gate dielectric for high-mobility polymer thin-film transistors and solvent effects”, Appl. Phys. Lett., Vol. 85, No. 15.
10. H. Sirringhaus, N. Tessler, R. H. Friend, 1998, “Integrated optoelectronic devices based on conjugated polymers,” Science, Vol. 280, pp. 1741-1744.
11. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, 2000, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science, Vol. 290, no. 5499, pp. 2123-2126.
12. A. Babel, S. A. Jenekhe, 2002, “Electron Transport in Thin-Film Transistors from an n-Type Conjugated Polymer,” Adv. Mater., Vol. 14, No. 5, pp. 371-374.
13. Hagen Klauk, 2005, “Organic circuits on flexible substrates,” Electron Devices Meeting, IEDM Technical Digest. IEEE International, pp. 446-449.
14. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, W. Weber, 2002, “High-mobility polymer gate dielectric pentacene thin film transistors,” J. Appl. Phys., Vol. 92, pp. 5259-5263.
15. A. R. Murphy, J. M. J. Frechet, P. C. Chang, J. B. Lee, and V. Subramanian, 2004, “Organic thin film transistors from a soluble oligothiophene derivative containing thermally removable solubilizing groups,” J. Amer. Chem. Soc., Vol. 126, pp. 1596-1597.
16. P. F. Baude, D. A. Ender, T. W. Kelley, M. A. Haase, D. V. Muyres, and S. D.Theiss, 2003, “Organic semiconductor RFID transponders,” IEEE Int. Electron Devices Meeting Tech. Dig., pp. 811-814.
17. C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, 1996, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” J. Appl. Phys., Vol. 80, pp. 2501.
18. D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, 1997, “Pentacene Organic Thin-Film Transistors—Molecular Ordering and Mobility,” IEEE Electron Device Lett., Vol. 18, No. 3, pp. 87-89.
19. J. H. Schön, S. Berg, C. Kloc, and B. Batlogg, 2000, “Ambipolar Pentacene Field-Effect Transistors and Inverters,” Science, Vol. 287, pp. 1022.
20. T. W. Kelley, D. V. Muyres, Paul, F. Baude, T. P. Smith, T. D. Jones, 2003, “High Performance Organic Thin Film Transistors,” Mat. Res. Soc. Symp. Proc., Vol. 771, pp. L6.5.1-L6.5.11.
21. L. A. Majewski, R. Schroeder, M. Grell, 2005, “Low-Voltage, High-Performance Organic Field-Effect Transistors with an Ultra-Thin TiO2 Layer as Gate Insulator,” Adv. Funct. Mater., Vol. 15, pp. 1017-1022.
22. P. V. Pesavento, R. J. Chesterfield, C. R. Newman, and C. D. Frisbie, 2004, “Gated four-probe measurements on pentacene thin-film transistors:Contact resistance as a function of gate voltage and temperature,” J. Appl. Phys., Vol. 96, No. 12, pp. 7312-7324.
23. S. Pyo, H. Son, K.Y. Choi, M. H. Yi, S. K. Hong, 2005, “Low-temperature processable inherently photosensitive polyimide as a gate insulator for organic thin-film transistors,” Appl. Phys. Lett., Vol. 86, pp. 133508.
24. R. Schroeder, L. A. Majewski, M. Grell, 2004, “Improving organic transistor performance with Schottky contacts,” Appl. Phys. Lett., Vol. 84, No. 6, pp. 48 1004-1006.
25. D. K. Hwang, K. Lee, J. H. Kim, S. Im, C. S. Kim, H. K. Baik, J. H. Park, E. Kim, 2006, “Low-voltage high-mobility pentacene thin-film transistors with polymer/high-k oxide double gate dielectrics,” Appl. Phys. Lett., Vol. 88, pp. 243513.
26. S. E. Fritz, T. W. Kelley, C. D. Frisbie, 2005, “Effect of Dielectric Roughness on Performance of Pentacene TFTs and Restoration of Performance with a Polymeric Smoothing Layer,” J. Phys. Chem. B, Vol. 109, No. 21, pp.10574-10577.
27. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard and R. M. Fleming, 1995, “C60 Thin Film Transistors,” Appl. Phys. Lett., Vol. 67, pp. 121-123.
28. A. R. Brown, D. M. de Leeuw, E. J. Lous and E. E. Havinga, 1994, “Organic n-type field-effect transistor,” Synth. Met., Vol. 66, Issue 3, pp. 257-261.
29. F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, and P. Alnot, 1993, “Molecular engineering of organic semiconductors: Design of self-assembly properties in conjugated thiophene oligomers,” J. Amer. Chem. Soc., Vol. 115, pp. 8716-8721.
30. B. Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, and F. Garnier, 1994, “Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films,” Chem. Mater, Vol. 6, pp. 1809-1815.
31. G. Horowitz, R. Hajlaoui, D. Fichou, A. E. Kassmi, 1999, “Gate voltage dependent mobility of oligothiophene field-effect transistors,” J. Appl. Phys., Vol. 85, Issue 6, pp. 3202-3206.
32. G. Horowitz, D. Fichou, X. Peng, Z. Xu, F. Garnier, 1989,“A Field-Effect Transistor Based On Conjugated Alpha-Sexithienyl,” Solid State Commun., Vol. 72, pp. 381.
33. G. Horowitz, X. Peng, D. Fichou, F. Garnier, 1992, “Role of Semiconductor/Insulator Interface in the Characteristics of p-Conjugated-Oligomer-Based Thin-Film Transistors,” Synth. Met., Vol. 51, pp. 419.
34. A. Dodabalapur, L. Torsi, H. E. Katz, 1995, “Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics,” Science, Vol.268, pp. 270.
35. E. M. Conwell, “Impurity Band Conduction in Germanium and
Slilcon,” Phys. Rev. 103, 51 (1956).
36. D. D. Eley, H. Inokuchi, and M. R. Willis, “The Semi-conductivity of Organic Substances. Part 4.-Semi-quinone Type Molecular Complexes,” Discus. Faraday Soc. 28, 54 (1959).
37. Hagen Klauk, 2005, “Organic circuits on flexible substrates”, Electron Devices Meeting, IEDM Technical Digest. IEEE International, pp. 446-449.
38. J. Park, J. Park, N. Kim, H. J. Lee and M. Yi, “Performance Enhancement of Organic Thin-Film Transistors with C60/Au Bilayer Electrode”, Jpn. J. Appl. Phys., Vol. 47, No. 7, pp. 5668–5671, 2008
39. W. Hu, Y. Zhao, J. Hou, C. Ma, and S. Liu, “Improving the performance of the organic thin-film transistors with thin insulating lithium fluoride buffer layer,” Microelectron. J., 38, 632, 2007.
40. S. T. Zhang, X. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J. Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, and X. Y. Hou:“Buffer-layer-induced barrier reduction: Role of tunneling in organic light-emitting devices,” Appl. Phys. Lett., 84, 425, 2004.
41. J. PARK, Ji. PARK, N. KIM, H. J. LEE, and M. YI,” Performance Enhancement of Organic Thin-Film Transistors with C60/Au Bilayer Electrode,” J. Appl. Phys., 47, 7, 2008.