| 研究生: |
胡瑜凌 Hu, Yvonne Yuling |
|---|---|
| 論文名稱: |
時間域聚焦多光子螢光顯微術之影像品質提升 Imaging Enhancements in Temporal Focusing-based Multiphoton Excitation Microscopy |
| 指導教授: |
陳顯禎
Chen, Shean-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 多光子顯微術 、螢光顯微術 、時間域聚焦 、影像式適應性光學 、數位微型反射鏡元件 |
| 外文關鍵詞: | multiphoton excitation microscopy, fluorescence microscopy, temporal focusing, image-based adaptive optics, digital micromirror device |
| 相關次數: | 點閱:184 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在時間域聚焦多光子顯微鏡(temporal focusing-based multiphoton microscopy)中,雷射脈衝在經過光柵分光後,會在成像面重新聚焦並疊合成最窄的頻寬。然而,雷射的脈衝寬度會因為系統本身的校正誤差,所應用的光學元件等外部因素以及樣品本身的干擾而產生變形,並因此降低螢光的激發效率與影像的品質。為了改善雷射在時間上的失真,本論文利用無波前感測器的適應性光學系統(wavefront sensorless adaptive optics system)去補償雷射脈衝寬度在系統中受到干擾而產生的扭曲。透過不同的電壓驅動可調變聚焦鏡(deformable mirror)去改變雷射波前,並利用截取而得的影像作為回饋信號,藉由攀登演算法(hill climbing algorithm)找出最大的區域影像強度,最後將得到的控制訊號作為可調變聚焦鏡變形量的參考,並縮小雷射脈衝的扭曲程度。加入適應性光學系統後,縱向激發呈更加均勻性的再聚焦,雙光子螢光訊號的縱向解析度易保持既有的水準。藉由R6G-doped PMMA 螢光薄膜,雙光子影像的對比變佳,影像強度也提升3.7倍。
本論文亦利用數位微型反射鏡元件(digital micromirror device,DMD)作為繞射元件,並成功運用於時間愈聚焦多光子顯微鏡。實驗結果顯示,以數位微型反射鏡元件為主的系統量測螢光薄膜,其縱向解析度可達4.0 μm,此結果相當於以600條/mm為主的時間域聚焦多光子顯微系統。除了具有光切面能力以外,數位微型反射鏡元件用在系統中可同時產生任意圖形於物鏡聚焦面,達到光罩的功能。
Temporal profile distortions reduce the excitation efficiency and image quality in temporal focusing-based multiphoton excitation (MPE) microscopy. To compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically is refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity.
This thesis also presents an enhanced temporal focusing-based MPE microscope in which the conventional diffraction grating is replaced by a digital micromirror device (DMD). Experimental results from imaging a thin fluorescence film show that the 4.0 μm axial resolution of the microscope is comparable to that of a setup incorporating a 600 lines/mm grating; hence, the optical sectioning ability of the proposed setup is demonstrated. Similar to a grating, the DMD diffracts illuminating light frequencies for temporal focusing, but additionally, it also exactly generates arbitrary patterns on the objective lens’ focal plane.
1. G. Zhu, J. V. Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express, vol. 13, pp. 2153-2159, 2005.
2. D. Oron, E. Tal and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express, vol. 13, pp 1468-1476, 2005.
3. B. R. Masters and P. T. C. So, Handbook of Biomedical Nonlinear Optical Microscopy, Oxford University Press, 2008.
4. M. Minsky, “Microscopy Apparatus,” U.S. Patent 3 013 467, 1961.
5. W. Kaiser and C. G. B. Garrette, “Two-photon excitation in CaF2:Eu2+,”Phys. Rev. Lett., vol. 9, pp. 229-231, 1961.
6. W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science, vol. 248, pp. 73-76, 1990.
7. G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti: sapphire system,” J. Microsc, vol. 181, pp. 253-259, 1995.
8. A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc, vol. 192, pp. 217-223, 1998.
9. J. Bewersdorf, R. Pick and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett., vol. 23, pp. 655-657, 1998.
10. D. N. Fittinghoff, P. W. Wiseman, and J. A. Squier, “Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy,” Opt. Express, vol. 7, pp. 273-279, 2000.
11. E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing,” Opt. Lett., vol. 30, pp. 1686-1688, 2005.
12. E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express, vol. 16, pp. 22039-22047, 2008.
13. D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett., vol. 35, pp. 1602-1604, 2010.
14. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun., vol. 218, pp. 1796-1805, 2008.
15. H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express, vol. 4, pp. 995-1005, 2013.
16. K. Isobe, T. Takeda, K. Mochizuki, Q. Song, A. Suda, F. Kannari, H. Kawano, A.Kumagai, A. Miyawaki, and K. Midorikawa, “Enhancement of lateral resolution and optical sectioning capability of two-photon temporal-focusing with structured illumination,” Biomed. Opt. Express, vol. 4, pp. 2396-2410, 2013.
17. A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” PNAS, vol. 105, pp. 20221-20226, 2008.
18. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics, vol. 5, pp.372-377, 2011.
19. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun., vol. 2, pp. 1-5, 2011.
20. Y.-C. Li, L.-C. Cheng, C-Y. Chang, C-H. Lien, P. J. Campagnola, and S.-J. Chen, “Fast Multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation,” Opt. Express, vol. 20, pp. 19030-19038, 2012.
21. Olympus Microscopy Resource Center [Online], Available: http://www.olympusmicro.com/
22. B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, 2th Ed., John Wiley & Sons, 2012.
23. J. W. Lichtman and J. A. Conshello, “Fluorescence microscopy,” Nat. Methods, vol. 2, no. 12, pp. 910-919, 2005.
24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Ed., Wiley, 2007.
25. J. R. Lakowicz, Topics in Fluorescence Spectroscopy, Volume 5: Nonlinear and Two-Photon Induced Fluorescence, Plenum Press, 2002.
26. B. R. Masters, Confocal Microscopy and Multiphoton Excitation Microscopy: The Genesis of Live Cell Imaging, SPIE Publications, 2006.
27. D. Kim, “Ultrafast optical pulse manipulation in three dimensional-resolved microscopic imaging and microfabrication,” PhD. Thesis, MIT, 2009.
28. J. W. Goodman, Introduction to Fourier optics, 3rd Ed., Roberts & Company, 2004.
29. G. Zhu, J. V. Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express, vol. 13, pp. 2153-2159, 2005.
30. Spitfire Pro: Ti: sapphire Regenerative Amplifier System, User’s manual, Newport, 2008.
31. L.-C. Cheng, “R&D of widefield multiphoton excited fluorescence microscopy,” Master Thesis, NCKU, 2010.
32. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express, vol. 20, pp. 8939-8948, 2012.
33. R. K. Tyson, Principles of Adaptive Optics, 2nd Ed., Academic Press, 1998.
34. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London, Ser. A, vol. 365, pp. 2829-2844, 2007.
35. J. M Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol., vol. 20, pp. 106-110, 2009.
36. M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” PNAS, vol. 99, pp. 5788-5792, 2002.
37. C.-Y. Chung, K.-C. Cho, C.-C. Chang, W.-C. Yen, and S.-J. Chen, “Adaptive optics system with liquid crystal phase-shift interferometer,” Appl. Opt., vol.45, pp. 3409-3414, 2006.
38. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” PNAS, vol. 103, pp. 17137-17142, 2006.
39. N. Ji, D. E Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods, vol. 7, pp. 141-147, 2010.
40. C.-Y. Chang, B.-T. Ke, H.-W. Su, W.-C. Yen, and S.-J. Chen, “Easily implementable field programmable gate array-based adaptive optics system with state-space multichannel control,” Rev. Sci. Instrum., vol. 84, pp. 095112, 2013.
41. W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, “Search-based active optic systems for aberration correction in time-independent applications,” Appl. Opt., vol. 49, pp. 307-314, 2010.
42. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” PNAS, vol. 103, pp. 17137-17142, 2006.
43. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett., vol. 36, pp. 825-827, 2011.
44. O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express, vol. 18, pp. 17521-17532, 2010.
45. R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, X. Levecq, D. Artigas, and P. Loza-Alvarez, “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy,” Biomed. Opt. Express, vol. 2, pp. 3135-3149, 2011.
46. N. Ji, D. E Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141-147 (2010).
47. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15, 18209-18219 (2007).
48. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495-2497 (2009).
49. A. Facomprez, E. Beaurepaire, and D. Débarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt. Express 20, 2598-2612 (2012).
50. A. J. Wright, David Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton Microscopy,” Microsc. Res. Tech. 67, 36-44 (2005).
51. P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc., vol. 237, pp. 136-147, 2010.
52. H. Dana and S. Shoham “Numerical evaluation of temporal focusing characteristics in transparent and scattering media,” Opt. Express, vol. 19, pp. 4937-4949, 2011.
53. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett., vol. 22, pp. 1793-1795, 1997.
54. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am., vol. 67, pp. 1200-1210, 1974.
55. A. Straub, M. E. Durst, and C. Xu, “High speed multiphoton axial scanning through an optical fiber in a remotely scanned temporal focusing setup,” Biomed. Opt. Express, vol. 2, pp. 80-88, 2011.
56. H. Dana and S. Shoham, “Remotely scanned multiphoton temporalfocusing by axial grism scanning,” Opt. Letters, vol. 37, pp. 2913-2915, 2012.
57. J.-Y. Yu, C.-H. Kuo, D. B. Holland, Y. Chen, M. Ouyang G. A. Blake, R. Zadoyan, and C.-L. Guo, “Wide-field optical sectioning for live-tissue imaging by plane-projection multiphoton microscopy,” J. Biomed. Opt., vol. 16, pp. 116009-1- 116009-9, 2011.
58. L. J. Hornbeck, “Digital Light ProcessingTM for High-Brightness, High-Resolution Application,” Proc. of SPIE, vol. 3013, pp. 27-40, 1997.
59. D. Dudley, W. Duncan, and J. Slaughter, “Emerging Digital Micromirror Device (DMD) Applications,” Proc. of SPIE, vol. 4985, pp.14-25, 2003.
60. T. Kreis, P. Aswendt, and R. Ho¨fling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng., vol. 40, pp. 926-933, 2001.
61. P. J. Rodrigo, I. R. Perch-Nielsen, and J. Glückstad, “High-speed phase modulation using the RPC method with a digital micromirror-array device,” Opt. Express, vol. 14, pp. 5588-5593, 2006.
62. E. Y. S. Yew, C. J. R. Sheppard, and P. T. C. So, “Temporally Focused Wide-field Two-photon Microscopy: Paraxial to Vectorial,” Opt. Express 10, 12951 (2013).
63. A. Vaziri and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express, vol. 18, pp. 19645-19655, 2010.