| 研究生: |
陳泰翔 CHEN, TAI-HSIANG |
|---|---|
| 論文名稱: |
幾丁聚醣混摻改質二氧化矽或3A分子篩複合膜應用於滲透蒸發之探討 Study on Chitosan/Modified Silica Particles/3A Zeolite Hybrid Membranes for Pervaporation |
| 指導教授: |
凌漢辰
Ling, Han-Chern |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 幾丁聚醣 、二氧化矽改質 、3A zeolite改質 、有機-無機混合膜 |
| 外文關鍵詞: | chitosan, modified silica particles, modified 3A zeolite, organic-inorganic hybrid membrane |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的是討論以不同的矽烷偶合劑改質二氧化矽與3A zeolite對乙醇除水的滲透蒸發實驗影響。
先利用溶膠-凝膠法(sol-gel method),以四乙氧基矽烷(Tetraethoxysilane, TEOS)製備二氧化矽(silica),之後使用 3-aminopropyltriethoxysilane (APTES)和3-mercaptopropyltrimethoxysilane (MPTMS)將二氧化矽與3A zeolite表面改質,另外用MPTMS改質的粒子可利用過氧化氫(H2O2)水溶液將表面的-SH官能基改變為-SO3H。
將不同的改質二氧化矽/3A zeollite混摻入幾丁聚醣內製作成複合膜,利用滲透蒸發實驗探討添加無機物後的複合膜對滲透蒸發效果的影響。改質後的二氧化矽粒子/3A zeolite由傅立葉反射式紅外線光譜(ATR-FTIR)、穿透式電子顯微鏡(TEM)鑑定其性質,複合膜則由傅立葉反射式紅外線光譜及熱重分析儀(TGA)鑑定其複合膜的性質。並進行膨潤實驗,比較改質前後及使用偶合劑種類不同而產生的影響。
改質過的二氧化矽與3A zeolite表面會有一層顏色較淡的物質或表面粗糙化,經過ATR鑑定確定是矽烷偶合劑鍵結在改質過後的粒子表面上。使用矽烷偶合劑改質過後的二氧化矽及3A zeolite,其滲透蒸發效果皆比未改質的二氧化矽或3A zeolite好。
The purpose of this research is to investigate the dehydration of aqueous ethanol solutions by pervaporation using hybrid chitosan membranes embedded with the silica and 3A zeolite particles which were modified by various silanes.
Firstly, the silica particles were obtained by the sol-gel reaction of tetraethyoxylsilane (TEOS). Later, 3-aminopropyltriethoxysilane (APTES) and 3-mercaptopropyltrimethoxysilane (MPTMS) were used to modify the surface of 3A zeolite and the synthesized silica particles. In addition, the MPTMS modified particles were further treated with H2O2 aqueous solution to change the function group -SH to -SO3H of the particle surfaces.
The hybrid membranes were prepared by incorporation the various treated silica/3A zeolite particles into chitosan. Those hybrid membranes were utilized in pervaporation performances. The modified silica/3A zeolite particles were characterized by ATR-FTIR and TEM, and the hybrid chitosan membranes were characterized by ATR-FTIR, TGA. Furthermore, the effects of modified silica/3A zeolite particles by various silanes on swelling behaviors in water and ethanol were also investigated.
It is found that there was a layer of slightly colored materials coated on the surface of the modified silica/3A zeolite particles. Furthermore, surface of the modified particles became rough in some instances. It is evident by ATR-FTIR that a layer of silanic compounds was formed on the surface of treated particles. In addition, the improvement in dehydration performances of aqueous ethanol solutions by using hybrid chitosan membrane incorporated with surface modified silica/3A particles were observed over the unmodified ones.
1. 王大全,“固體酸與精細化工”,化學工業出版社,北京,2006
2. 王大銘,“滲透蒸發技術發展”,國立台灣大學「台大工程」學刊, 84,119 (2002)
3. 吳政樑, “二氧化矽/甲基丙烯酸甲酯核殼型複合乳膠粒子之合成與性質”, 國立成功大學化學工程研究所碩士論文,2009
4. 高茲;何鳴元;戴逸云,“沸石催化與分離技術”,中國石化出版社,北京,1999
5. 郭文正;曾添文,“薄膜分離”,高立圖書有限公司,台灣,1988
6. 廖益廷, “熔膠凝膠法合成單一分散之氧化矽奈米微球”,逢甲大學學生報告ePaper,2006
7. 蔡欣穎, “交聯幾丁聚醣/分子篩複合膜應用於乙醇脫水之探討”, 國立成功大學化學工程研究所碩士論文,2008
8. 賴炎輝,“以表面改質之奈米粉體強化聚二醚酮基材”,國立中山大學材料科學研究所碩士論文,2006
9. Ahu, S. H.; Kim, S. H.; Lee, S. G., “Surface-modified silica nanoparticle-reinforced poly(ethylene 2,6-naphthalate)”, J. App. Polym. Sci., 94, 812 (2004)
10. André Vergès, M.; Mifsud, A.; Serna, C. J., “Formation of rod-like zinc oxide microcrystals in homogeneous solutions”, J. Chem. Soc. Faraday Trans., 86, 959 (1990)
11. Bowen, T. C.; Noble, R.D.; Falconer, J. L., “Fundamentals and applications of pervaporation through zeolite membranes” J. Membr. Sci., 245, 1(2004)
12. Brinker, C. J. and Scherer, G. W., “Sol-Gel Science: The physics and chemistry of sol-gel processing”, Academic Press, Inc., New York (1990)
13. Chen, J. H.; Liu, Q. L.; Zhang, X. H.; Zhang, Q. G., “Pervaporation and characterization of chitosan membranes cross-linked by 3-aminopropyltriethoxysilane” J. Membr. Sci., 292, 1, 125(2007)
14. Chen, S.; Hayakawa, S.; Shirosaki, Y.; Fujii, E.; Kawabata, K.; Tsuru, K.; Osaka, A., “Sol–Gel Synthesis and Microstructure Analysis of Amino-Modified Hybrid Silica Nanoparticles from Aminopropyltriethoxysilane and Tetraethoxysilane” J. Am. Chem. Soc., 92, 2074 (2009)
15. Cui, Z.; Xiang, Y.; Si, J.; Yang, M.; Zhang, Q.; Zhang, T., “Ionic interactions between sulfuric acid and chitosan membranes” Carbohydrate Polymers, 73, 111(2008)
16. Fuji, M.; Takei, T.; Watanabe, T.; Chikazawa, M., “Wettability of fine silica powder surfaces modified with several normal alcohols”, Colloids and Surface A: Physicochemicaland Engineering Aspects, 154, 13 (1999)
17. He, J. X.; Cui, M. Y.; Zheng, Y. Y.; Tang, W. H.; Chen, B. Y.; Tsukamoto, K.; Li, C. R., “Self-assembly of modified silica nanospheres at the liquid/liquid interface” Materials Letters, 64, 463(2010)
18. Hsu, W. P.; Rönnquist, L.; Matijević, E, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds. 2. Cerium(IV)”, Langmuir, 4, 31 (1988)
19. Huang, R. Y. M., “Pervaporation Membrane Separation Process”, Elsevier, New York (1991)
20. Iler, R. K., “The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica”, Wiley, New York (1979)
21. Kaminski, W.; Marszalek, J.; Ciolkowska, A., “Renewable energy source―Dehydrated ethanol” Chemical Engineering Journal, 135, 95 (2008)
22. Kurita, K., “Controlled functionalization of the polysaccharide chitin” Progress in Polymer Science, 26, 1921(2001)
23. LaMer, V. K.; Dinegar, R. H., “Theory, production and mechanism of formation of monodispersed hydrosols”, J. Am. Chem. Soc., 72, 4847 (1950)
24. Liauw, C. M.; Lees, G. C.; Hurst, S. J.; Rothon, R. N.; Ali, S., “Effect of silane-based filler surface treatment formulation on the interfacial properties of impact modified polypropylene-magnesium hydroxide composites”, Composites Part A, 29A, 1313 (1998)
25. Liu, Y. L.; Hsu, C. Y. ; Su, Y. H. ; Lai, J. Y., “Chitosan-Silica Complex Membranes from Sulfonic Acid Functionalized Silica Nanoparticles for Pervaporation Dehydration of Ethanol-Water Solutions” Biomacromolecules, 6, 368 (2005)
26. Look, J-L.; Bogush, G. H.; Zukoski, C. F., “Colloidal interactions during the precipitation of uniform submicrometre particles”, Faraday Discuss. Chem. Soc., 40, 345 (1990)
27. Lu, C. H.; Luo C. Q.; Cao, W. X., “Fabrication of ultrathin films based on chitosan and bovine serum albumin and their stability studied with the radio-labeled method” Colloids and Surfaces B-Biointerfaces, 25, 19 (2002)
28. Lu, H. B.;Hu, Y.; Gu, M. H.; Tang, S. C. ; Lu, H. M.; Meng, X. K., “Synthesis and characterization of silica–acrylic–epoxy hybrid coatings on 430 stainless steel” Surface & Coatings Technology, 204, 1, 91(2009)
29. Matijević, E., “Monodispersed metal (hydrous) oxides-a fascinating field of colloid science”, Acc. Chem. Res., 14, 22 (1981)
30. Mochizuki, A.; Sato, Y.; Ogawara, H.; Yamashita, S., “Pervaporation Separation of Water / Ethanol Mixtures through Polysaccharide Membranes. I. The Effects of Salts on the Permselectivity of Cellulose Membrane in Pervaporation” J. Appl. Polym. Sci., 37, 3357 (1989)
31. Mukoma, P.; Jooste, B. R.; Vosloo, H. C. M., “Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells” J. Power Sources, 136, 16 (2004)
32. Mulder, M., “Basic Principles of Membranes Technology”, Kluwer Academic Publishers, Dordrecht (1991)
33. Ocaña, M.; Matijević, E., “Well-defined colloidal tin(Ⅳ) oxide particles”, Acc. Chem. Res., 14, 22 (1990)
34. Ocaña, M.; Rodrigure-Clement, R.; Serna, C. J., “Uniform colloidal particles in solution: Formation mechanisms”, Adv. Mater., 7, 212 (1995)
35. Pierre, A. C., “Introduction to Sol-Gel Processing”, Kluwer, Boston (1998)
36. Scott, A. F.; Gray-Munro, J. E.; Shepherd, J. L., “Influence of coating bath chemistry on the deposition of 3-mercaptopropyltrimethoxysilane films deposited on magnesium alloy” J. Colloid Interface Sci., 343, 474 (2010)
37. Semenova, S. I.; Ohya, H; Soontarapa, K., “Hydrophilic membranes for pervaporation: An analytical review”, DESALINATION, 110, 251 (1997)
38. Smitha, B.; Sridhar, S.; Khan, A. A., “Synthesis and characterization of proton conducting polymer membranes for fuel cells” J. Membr. Sci., 225, 63 (2003)
39. Stöber, W.; Fink, A.; Bohn, E., “Controlled growth of monodisperse silica spheres in the micro size range”, J. of Colloid & Interface Sci., 26, 92 (1968)
40. Sun, H. L.; Lu, L. Y.; Chen, X.; Jiang, Z. Y., “Surface-modified zeolite-filled chitosan membranes for pervaporation dehydration of ethanol” Applied Surface Science, 254, 5367 (2008)
41. Wang, J. T.; Zheng, X. H.; Wu, H.; Zheng, B.; Jiang, Z. Y.; Hao, X. P.; Wang, B. Y., “Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell” J. Power Sources, 178, 9 (2008)
42. Wu, S.; Shen, J.; Zou, H., “ Polymer/Silica Nanocomposites:Preparation, Characterization, Propertles, and Applications”, Chem. Rev., 108, 3893 (2008)
43. Yeom, C. K.; Lee, S. H.; Lee, J. M., “Pervaporative permeations of homologous series of alcohol aqueous mixtures through a hydrophilic membrane” J. Appl. Polym. Sci., 79, 703 (2001)