| 研究生: |
賴冠旭 Lai, Kuan-Hsu |
|---|---|
| 論文名稱: |
生物分子馬達運動分析 Analysis on Biomolecular Motors Motion |
| 指導教授: |
黃明哲
Huang, Ming-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 精細平衡 、有效擴散係數 、隨機性 、馬可夫過程 、分子馬達 |
| 外文關鍵詞: | two-states, randomness, effective diffusion coefficient, Fokker-Planck equation, ATP |
| 相關次數: | 點閱:127 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分子馬達(molecular motors)其工作環境是在奈米尺度下,利用ATP水解及水解產物的釋放,將此化學能轉換成機械功,進而產生機械運動,是目前主要的議題。例如Dynein蛋白質酵素分子,在運動時會產生鍵結在微管上與脫離微管之連續動作。本文使用兩構形狀態(two-states)之運動模型來模擬其運動情況。在此模型中,採用Fokker-Planck equation為運動方程式,並運用能量觀點可適切地分析受到位能梯度之影響。
本文使用一套建構在破壞精細平衡(detailed balance)上的數值演算法,來探討分子馬達化學轉換的過程。此演算法是用連續馬可夫過程(continuous Markov process)描述其跳躍過程(jump process)與跳躍率(jump rate),來解此系統運動模式。
運用上述方法,並採用MATLAB7.0軟體,分析在無外力作用、有外力作用與ATP濃度變化對其速度、有效擴散係數與隨機性之影響。得到之結果,對分子馬達化學能轉換成機械功之理論分析有所幫助。
How molecular motors that function at nano scale convert chemical energy from adenosine triphosphate(ATP) into mechanical force and motion is the one of the main themes of modern biology. Dynein, a protein enzyme, alternates between binding and unbinding with microtubule in motion. This paper used two-states model to investigate the movement behaviors of molecular motor. The Fokker-Planck equation was used to analyze how potential influens molecular motor.
We use a numerical algorithm that presented by Wang, et al. to study of biomolecular transport processes. In the algorithm a continuous Markov process is discretized as a jump process and the jump rates are derived from local solutions of the continuous system.
We used the algorithm solved by Matlab 7.0 to calculate the mean velocities, the effective diffusion coefficient and the randomness parameter of the molecular that subjected to external load or not.Analytical results of this study are discussed to provide further insight into the chemomechanical theory of molecular motor.
1. Kuo, S.C., Sheetz, M.P., Force of single kinesin molecules measured
with optical tweezers, Science, 260, 232-234, 1993.
2. Svoboda, K., Schmidt, C. F., Schnapp, B.J., Block, S.M., Direct
observation of kinesin stepping by optical trapping interferometry, Nature,
365, 721-727, 1993.
3. Finer, J.T., Simmons, R.M., Spudich J.A., Single myosin molecule mechanics:
piconewton forces and nanometre steps, Nature, 386, 113-119, 1994.
4. Yin, K., McGiff, J.C, Bell-Quilley, C.P., Role of chloride in the variable
response of the kidney to cyclooxygenase inhibition, Am. J. Physiol, 268,
F561-F568, 1995.
5. Schnitzer, M.J., Block, S.M., Kinesin hydrolyzes one ATP per 8-nm step,
Nature, 388, 386–390, 1997.
6. Block, S.M., Goldstein, L.S., Schnapp, B.J., Bead movement by single
kinesin molecular with optical tweezers, Nature, 48, 348- 352, 1990.
7. Peskin, C., Odell, G., Oster, G., Cellular motions and thermal
fluctuations : the Brownian rachet, Biophys, 65, 316-324, 1993.
8. Peskin, C., Oster, G., Coordinated hydrolysis explains the mechanical
behavior of kinesin, Biophys, 68, 202-211, 1995.
9. Mehta, A.D., Rock, R.S., Rief, M., Spudich, J.A., Mooseker, M.S., Cheney,
R.E., Myosin-V is a processive actin-based motor, Nature, 400, 590-593,
1999.
10.De La Cruz, E.M., Wells, A.L., Rosenfeld, S.R., Ostap, E.M., Sweeney, H.
L., The kinetic mechanism of myosin V. Proc. Natl. Acad. Sci. USA 96, 13726-
13731, 1999.
11.Walker, M.L., Burgess, S.A., Sellers, J.R., Wang, F., Hammer Ⅲ, J. A.,
Trinick, J., Knight, P.J., Two-headed binding of a processive myosin to F-
actin. Nature 405, 804-807, 2000.
12.Elston, T.C., A macroscopic description of biomolecular transport., J Math
Biol, 41, 189-206, 2000..
13.Prost, J., Chauwin, J.F., Peliti, L., Ajdari, A., Asymmetric pumping of
particles, PHYSICAL REVIEW LETTERS, 72, 2652, 1994.
14.Hirakawa, E., Higuchi, H., Toyoshima, Y.Y., Processive movement of single
22S dynein molecules occurs only at low ATP concentrations,PNAS, 97, 2533-
2537, 2000.
15.Culver-Hanlon, T.L., Lex, S.A., Stephens, A.D., Quintyne, N.J., King,S.J.,A
microtubule-binding domain in dynactin increases dynein processivity by
skating along microtubules, Nature Cell Biology, 8(3), 264-70, 2006.
16.Risken, H., The Fokker-Planck Equation. Methods of Solution and
Applications, Springer, Berlin, Heidelberg, 1989.
17.Wang, H., Peskin, C., Elston, T., A robust numerical algorithm for studying
biomolecular transport processes, Theor. Biol, 221, 491-511, 2003.
18.Peskin, C.S., Oster, G. F., Force production by depolymerizing
microtubules: load-velocity and run-pause statistics, Biophys. J., 69, 2268-
2276, 1995.
19.Svoboda, K., Mitra, P.P.,Block, S.M., Fluctuation analysis of Motor Protein
Movement and Single Enzyme Kinetics., Proc. Natl. Acad. Sci. USA, 91, 11782-
11786, 1994.
20.Kolomeisky, A.B.and Fisher, M. E., A simple kinetic model describes the
processivity of Myosin-V, Biophys. J., 84, 1642-1650, 2003.
21.Marx, A., muller, J., Mandelkow, E., The structure of microtubule motor
proteins, advances in protein chemistry, 71, 299-344, 2005.
22.Hirokawa, N., Kinesin and dynein superfamily proteins and the mechanism of
organelle transport, Science, 279, 519-526, 1998.
23.Sablin, E.P., Kull, F.J., Cooke, R., Vale, R.D., Fletterick, R.J., Crystal
(6574), 555-559, 1996.
24.Dimroth, P., Wang, H., Grabe, M., Oster, G., Energy transduction in the
sodium F-ATPase of propionigenium modestum, Proc. Natl. Acad. Sci. USA, 96,
4924-4929, 1998.
25.Richard, B., Melissa, A., Make room for dynein, Cell Biology, 8, 490-494,
1998.
26.黃志印, 肌凝蛋白V多重路徑運動分析, 成大工科碩士論文, 2004.6.
27.郭光輝, 生物分子馬專利地圖及分析生物分子馬達地圖, 行政院國家科學委員會技術資
料中心, 64-89, 2003.
28.簡清富, 運動素於外加力負載下之運動分析, 成大工科碩士論文, 2003.7.