簡易檢索 / 詳目顯示

研究生: 陳呂鳴
Chen, Lu-Ming
論文名稱: 撓性連桿含裂縫之速回機構的動態分析
Dynamic Analysis of Quick-Return Mechanism with a Crack in the Flexible Linkage
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 60
中文關鍵詞: 裂縫速回機構
外文關鍵詞: quick-return mechanism, crack
相關次數: 點閱:54下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以有限元素法來分析連桿含裂縫之速回機構的動態行為。撓性連桿以Timoshenko樑來模擬,即考慮連桿的旋轉慣性以及剪應變效應;考慮曲柄為剛體,且以定轉速旋轉帶動撓性連桿。撓性連桿上的裂縫假設為開啟狀態的橫向裂縫,並利用裂縫之應力強度因子及卡氏定理推導出含裂縫元素的局部柔度矩陣。本文以有限元素法和Lagrange 方程式推導系統的運動方程式,並以Runge-Kutta數值積分方法求解系統的動態響應,探討當撓性連桿上的裂縫位置不同和裂縫深度不同時,對系統之動態響應的影響。數值結果顯示,裂縫位置越靠近平移旋轉套筒處,連桿端點位移之動態響應的振幅越大。另外裂縫的深度越大,系統動態響應的振幅也越大。

     Dynamic response of a quick-return mechanism with a crack in the flexible linkage is investigated in this thesis. The flexible linkage of the system is modeled as a Timoshenko beam, which includes the effects of rotary inertia and shear deformation. The rigid crank drives the flexible linkage at a constant angular speed. The crack in the flexible linkage is modeled as a transverse open crack whose local flexibilities are calculated by using a fracture mechanics approach and the Castigliano’s theorem. The finite element method and Lagrange equation are employed to derive the equations of motion of the system. Dynamic responses are obtained by using the Runge-Kutta method. Influences on dynamic response of the system due to different depths and locations of the crack on flexible linkage are investigated.

    目 錄 摘要………………………………………………………………………i 英文摘要…………………………………………………………………ii 誌謝………………………………………………………………………iii 表目錄……………………………………………………………………vi 圖目錄……………………………………………………………………vii 第一章 緒論…………………………………………………………1 1-1 研究動機……………………………………………………1 1-2 文獻回顧……………………………………………………3 1-3 本文研究……………………………………………………7 第二章 系統運動方程式……………………………………………9 2-1 基本假設……………………………………………………9 2-2 連桿內位移場及位置向量…………………………………10 2-3 連桿元素之動能與應變能…………………………………11 2-4 有限元素法…………………………………………………13 2-5 能量法………………………………………………………17 第三章 裂縫模型之建立……………………………………………20 3-1 應變能密度函數……………………………………………20 3-2 應力強度因子………………………………………………21 3-3 局部柔度……………………………………………………22 3-4 含裂縫元素之勁度矩陣……………………………………24 第四章 數值模擬之結果與討論……………………………………26 4-1 程式之驗證…………………………………………………27 4-2 收斂性分析…………………………………………………27 4-3 含裂縫之速回機構系統……………………………………28 第五章 結論…………………………………………………………30 參考文獻…………………………………………………………………32 附錄………………………………………………………………………35 自述………………………………………………………………………60

    [1] Chu, S. C. and Pan, K. C., “Dynamic Response of a High Speed Slider-Crank with an Elastic Connecting Rod,” Journal of Engineering for Industry, Vol. 97(2), pp. 542-550, 1975.
    [2] Bahgat, B. M. and Willmert, K. D., “Finite Element Vibrational Analysis of Plannar Mechanisms,” Mechanism and Machine Theory, Vol. 11, pp. 47-71, 1976.
    [3] Badlani, M. and Kleinhenz, W., “Dynamic Stability of Elastic Mechanisms,” ASME Journal of Mechanical Design, Vol. 101(1), pp. 149-153, 1979.
    [4] Beale, B. G. and Scott, R. A., “The Stability and Response of a Flexible Rod in Quick Return Mechanism,” Journal of Sound and Vibration, Vol. 166(3), pp. 463-476. 1993.
    [5] Fung, R. F. and Lee, F. Y., ‘‘Dynamic Analysis of the Flexible Rod of a Quick-Return Mechanism with Time-Dependent Coefficients by the Finite Element Method,’’ Journal of Sound and Vibration, Vol. 199(2), pp. 237 -251, 1997.
    [6] Liebowitz H., Vanderveldt H. and Harris D. W., “Carrying Capacity of Notched Column,” International Journal of Solids and Structures, Vol. 3, pp. 489-500, 1967.
    [7] Gasch, R., “Dynamics Behaviour of a Simple Rotor with a Cross- Section Crack,” Institution of Mechanical Engineers Conference Publication, Vibration in Rotating Machinery, Paper No. C178/76, pp. 123-128, 1976.
    [8] Henry, T. A. and Okah-Avae, B.E., “Vibrations in Cracked Shafts,” Institution of Mechanical Engineers Conference Publication, Vibration in Rotating Machinery, Paper No. C162/76, 1976.
    [9] Grabowski, B., “The Vibrational Behavior of a Turbine Rotor Containing a Transverse Crack,” ASME Journal of Mechanical Design, Vol. 102, pp. 140-146, 1980.
    [10] Dimarogonas, A. D. and Paipetis, S. A., Analytical Methods in Rotor Dynamics, Applied Science Publishers, London and New York, 1983.
    [11] Tada H., Paris P. and Irwin G., The Stress Analysis of Cracks Handbook, Del Research Corporation, Paris, 1985.
    [12] Papadopoulos, C. A. and Dimarogonas A. D., “Coupled Longitudinal and Bending Vibrations of a Rotating Shaft with an Open Crack,” Journal of Sound and Vibration, Vol. 117(1), pp. 81-93, 1987.
    [13] Papadopoulos, C. A. and Dimarogonas A. D., “Coupled Longitudinal and Bending Vibrations of a Cracked Shaft,” ASME Journal of Vibration, Acoustics, Stress and Reliabilty in Design, Vol. 110, pp. 1-8, 1988.
    [14] Papadopoulos, C. A. and Dimarogonas A. D., “Stability of Cracked Rotors in the Coupled Vibration Mode,” ASME Journal of Vibration, Acoustics, Stress and Reliabilty in Design, Vol. 110, pp. 356-359, 1988.
    [15] Leung, P. S., “The Effects of a Transverse Crack on the Dynamics of a Circular Shaft,” Proceedings of the International Conference on Rotating Machine Dynamics, Venice, Italy, pp. 59-67, 1992.
    [16] Hwang, J. R. and Choi, S. T., “Dynamic Analysis of a Geared Rotor- Bearing System with an Open Crack,” Journal of the Chinese Society of Mechanical Engineers, Vol. 20(5), pp. 425-435, 1999.
    [17] Sekhar, A. S. and Jayant, K. D., “Effects of Cracks on Rotor System Instability,” Mechanism and Machine Theory, Vol. 35, pp. 1657- 1674, 2000.
    [18] Huang, C. J. and Jou, B. H., “Vibration and Stability of a Geared Rotor System with an Open Crack,” Journal of Air Force Institute of Technology, Issue 1, Vol. 1, pp. 73-87, 2002.

    下載圖示 校內:立即公開
    校外:2005-08-31公開
    QR CODE