| 研究生: |
葉慶宇 Yeh, Ching-Yu |
|---|---|
| 論文名稱: |
剪力板螺栓接合設計與鋼梁柱接頭耐震試驗分析研究 Seismic Design and Tests of Bolted Shear-Tab Connections and Steel Moment Connections |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 共同指導教授: |
張惠雲
Chang, Heui-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 鋼梁柱接頭 、剪力板厚 、螺栓滑動 、梁腹彎矩傳遞比例 、有限元素分析 |
| 外文關鍵詞: | steel beam-to-column connection, plate thickness of shear tab, bolt slip, moment transmission ratio of beam web, finite element analysis |
| 相關次數: | 點閱:127 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對建築鋼結構梁柱接頭之梁腹-剪力板間高強度螺栓接合性能,整理與分析美國、台灣與日本之設計方法,並進行接頭試驗驗證與有限元素模擬分析。本研究試驗有兩組鋼梁柱接頭,分別為傳統單剪力板型式 (UR)與雙剪力板補強型式 (DS)。UR接頭試驗結果顯示,若剪力板尺寸依照梁腹彎矩需求設計,而高強度螺栓則如台灣設計實務考慮偏心載重影響與滑動強度,如此設計出來的鋼梁柱接頭可以發展出4 %弧度層間變位角之變形能力,滿足目前規範要求。另一方面,採用雙剪力板補強時,剪力板應力超過鋼材降伏強度而導致剪力板與柱面間銲道開裂,使DS接頭在完成4 %弧度層間變位角測試迴圈前即破壞。分析兩組試驗之應變計量測結果後發現,由梁腹傳到柱面之彎矩比例在實驗開始時接近甚至超過梁腹與全斷面之彈性斷面模數比,而接頭最大強度時彎矩比例接近梁腹與全斷面之塑性斷面模數比,也就是說高強度螺栓滑動與預力損失並不影響梁腹之彎矩傳遞能力。最後本研究利用有限元素模擬進行設計參數研究,結果發現剪力板厚度增加能有效地降低等效塑性應變 (PEEQ值)與破壞應力 (von Mises stress),而改變螺栓配置與強度則效果相對有限。另外,改變銲接扇形開孔形狀雖能改善開孔根部應力集中之現象,但無法避免梁翼與銲道熱影響區附近開裂所導致之鋼梁柱接頭破壞。
In this study, full-scale tests were first conducted on two steel H-beam-to-box-column connections with bolted-web-and-welded-flange (BWWF) details. One connection reflects the design practice in Taiwan, and the other exams the retrofit scheme of adding another shear tab and high-strength bolts. The shear tabs were designed to have moment capacity more than the beam webs. Slip strength of high-strength bolts were used in the design of the bolted web connections. Both the connections were tested under the AISC 2016 loading protocol and sustained a drift angle of 4%. The strain guage measurement indicates that high-strength bolts slip and lose the pretension, even at a small drift angle like 0.375%. That also shows that bolted web connections share moment and the moment ratio changes with the connection behavior. In detail, the moment ratio and bolt pretension drop to the minimum when the connections strat to have plastic behavior at a drift anlge of 1%. As the connections sustain greater drift angles, stress redistribution causes the moment ratio to increase. The techniques of FEA were then applied to study design paramters. The result shows that the increase in plate thickness of shear tabs can effectively reduce the equivalent plastic strain (PEEQ value) and von Mise stress at the root of a weld access hole, and base metal surrounding the beam flange groove welds. In contrast, bolt arrangement and strength, and shapes of weld access holes can affect, but to a limited extent.
1. 中華民國鋼結構協會,技術備忘錄第002號:H梁扇形細部設計與施工,2017。
2. 中華民國鋼結構協會,技術備忘錄第003號:銲接組合H型鋼之銲道設計,2017。
3. 內政部營建署,鋼構造建築物鋼結構設計技術規範,2010。
4. 日本建築學會,鋼構造接合部設計指針,日本,2001 (2006改訂),2012。
5. 林克強,鋼構造抗彎矩構架建築結構設計實例,國家地震工程ITP研討會,2014。
6. 紀惟,剪力板彎矩強度需求比對鋼梁柱接頭耐震性影響研究,碩士學位論文,國立成功大學 (指導教授: 賴啟銘與張惠雲),2016。
7. 張志高,螺栓結構非線性行為有限元素分析,碩士學位論文,逢甲大學 (指導教授: 朱志義),2010。
8. 陳佳郁,鋼梁柱接頭剪力板螺栓接合設計與分析驗證,碩士學位論文,國立成功大學 (指導教授: 賴啟銘與張惠雲),2017。
9. 陳佳郁、賴啟銘、張惠雲,高強度螺栓滑動試驗與有限元素分析模擬,中華民國力學學會第四十屆全國力學會議,2016。
10. 陳紀勛,鋼柱與鋼梁腹板開孔位處塑性區樑柱接頭之耐震行為,碩士學位論文,國立交通大學 (指導教授: 陳誠直與林克強),2008。
11. 陳誠直、林群洲,扇形焊接開孔於鋼骨樑柱接頭耐震行為之影響,建築鋼結構進展,2005。
12. 蔡克銓等,鋼骨梁柱接頭橫隔板耐震性能研究,內政部建築研究所,2011。
13. 蔡岳勳,實尺寸鋼結構梁柱彎矩接頭試驗與分析,碩士學位論文,國立交通大學 (指導教授: 陳誠直),2010。
14. 薛中堯,採用高強度鋼材梁柱彎矩接頭之耐震行為,碩士學位論文,國立交通大學 (指導教授: 陳誠直),2016。
15. AISC, “Seismic Provisions for Structural Steel Building,” American Institute of Steel Construction, 2010,2016.
16. AISC, “Specifications of seismic provisions for structural steel buildings,” American Institute of Steel Construction, 1992.
17. Boresi, A.P., Schemidt, R.J., & Sidebottom, O.M., “Advance Mechanics of Materials,” John Wiley & Sons, Inc, 1993.
18. Chen, C.-C., & Lin, C.-C. “Seismic performance of steel beam-to-column moment connections with tapered beam flanges,” Journal of Engineering Structural, 48: 588-601, 2013.
19. Chou, C.-C., Tsai, K.-C., Wang, Y.-Y. & Jao, C.-K. “Seismic rehabilitation performance of steel side plate moment connections,” Earthquake Engineering & Structural Dynamics, 39:23-44, 2009.
20. El-Tawil, S., Mikesell, T., & Kunnath, S.K. “Effect of Local Details and Yield Ratio on Behavior of FR Steel Connections,” Journal of Structural Engineering, ASCE, 126(1): 79-87, 2000.
21. Engelhardt, M.D. & Husain, A.S. “Cyclic loading performance of welded flange-bolted web connections,” Journal of Structural Engineering, ASCE, 119(12): 3537-3550, 1993.
22. FEMA, “Interim Guidelines: Evaluation, Repair, Modification, and Design of Welded Steel Moment Frame Structures,” Report No. SAC-95-02, Federal Emergency Management Agency, 1995.
23. FEMA, “Recommended Seismic Design Criteria for New Steel Moment-Frame Building,” Report No. FEMA-350, Federal Emergency Management Agency, 2000.
24. Kim, T., Stojadinović, B., & Whittaker, A.S. “Seismic Performance of Pre-Northridge Welded Steel Moment Connections to Built-Up Box Columns,” Journal of Structural Engineering, ASCE, 134(2): 289-299, 2008.
25. Morrison, M.L., Schweizer, D.Q., & Hassan, T. “Seismic Enhancement of Welded Unreinforced Flange-Bolted Web Steel Moment Connections,” Journal of Structural Engineering, ASCE, 142(11): 04016102, 2016.
26. Ricles, J.M., Mao, C., Lu, L.-W., & Fisher, J.W. “Ductile details for welded unreinforced moment connections subject to inelastic cyclic loading,” Engineering Structures, 25 (2003):667-680, 2003.
27. SAC, “Parametric tests on unreinforced connections. Volume 1-Final report,” Rep. No. SAC/BD-00/01, Richmond, CA, 2000d.
28. Stojadinovic, B., Goel, S.C., Lee, K.-H., Margarian, A.G., & Choi, J.-H. “Parametric tests on unreinforced steel moment connections,” Journal of Structural Engineering, ASCE, 126 (1): 40-49, 2000.
29. Tsai, K.-C., Wu, S. & Egor P. Popov. “Experimental Performance of Seismic Steel Beam-Column Moment Joints,” Journal of Structural Engineering, ASCE, 121: 6 (925), 1995.
30. Uniform building code. Int. Conf. of Build. Officials, Whittier, Calif, 1991.
31. Youssef, N. F. G., Bonowitz, D., & Gross, J.L. “A survey of steel moment reisiting frame buildings affected by the 1994 Northridge earthquake.” Rep. No. NISTIR 5625, National Institute of Standards and Technology, Gaithersburg, Md, 1995.