| 研究生: |
蔡炳傑 Tsai, Ping-Chieh |
|---|---|
| 論文名稱: |
氮化銦鎵發光二極體發光效率之提升及其白光發光二極體之製作 Enhanced Luminescence Efficiency of InGaN-based Light-Emitting Diodes and Fabrication of White Light-Emitting Diodes |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 氮化銦鎵發光二極體 、白光發光二極體 、發光二極體 |
| 外文關鍵詞: | InGaN-based Light-Emitting Diodes, White Light-Emitting Diodes, LED |
| 相關次數: | 點閱:104 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,圖形化之基板是以黃光微影與乾蝕刻方式來製作,根據高解析度X光繞射光譜之半高寬與穿透式電子顯微鏡之結果顯示,以圖形化藍寶石基板製作之氮化鎵磊晶層,其穿透差排密度可明顯的降低,室溫下20 mA之輸出功率與外部量子效率,對於有/無圖形化基板分別為11.24/8.89 mW與20.85/ 16.49%。此外,可發現有圖形化基板之接面溫度與熱阻均比較小。
對於發光二極體的應用,有一些情況將影響到元件的可靠度,例如靜電放電。在本論文中,利用一個金屬-氧化物-半導體(金氧半)電容器並聯到氮化銦鎵發光二極體,藉以達到較高的靜電放電保護,藉由此法,靜電保護電壓可由200 V提升到1900 V左右其靜電防護平均大約增加了6至7倍左右。
在增加元件發光效率方面,分別利用增加光取出效率與內部量子效率等方式。就光取出效率方式而言,當在成長p型氮化鋁鎵電子阻障層時,改變三甲基鎵的流量由10增加到60 sccm,此時其對應的V/III比將由2600降低到433,其縱向成長速率將大於側向成長速率,即可得到粗糙的氮化鋁鎵表面,進而增加p型氮化鎵層表面的粗糙度,藉由此方法,其輸出功率對流量分別為10、20、40與60 sccm的三甲基鎵是15.4、15.9、17.5與18.9 mW,其60 sccm的外部量子效率大約比10 sccm增加34.8%。
此外對於內部量子效率的提升,利用一個應力釋放層同時搭配在其間摻雜適量的矽。這個超晶格結構的氮化銦鎵/氮化鎵應力釋放層被加入在n型氮化鎵與多重量子井層之間,波長的藍移可以從10減少到2.5 nm,同時發現電激發光之強度也增加了,為了改善光特性,一個適當的矽摻雜被加入到應力釋放層中的阻障層,此阻障層能隙被往下拉,形成一個電洞阻障層,將電洞侷限在多重量子井層內,以增加電子電洞對的複合機率,藉由此方法,可以發現輸出功率增加了25%達到18.7 mW。
另外,爲改善因基板本身絕緣特性所造成的電流擁擠效應,一個電子阻障層被引入在n型氮化鎵層與多重量子井層之間,藉由電子阻障層的使用,可以發現到因為有均勻的側向電流分散效果,其內部量子效率明顯被增加。使用電子阻障層,其輸出功率約可增加13%,此外在可靠度方面,有使用與沒使用電子阻障層,其輸出功率衰減的趨勢是一樣的,這說明採用電子阻障層的方式,不但沒因此而減低元件的可靠度,反而有助於輸出功率的增加。
在白光元件製作方面,一個製作完成的氮化銦鎵發光二極體結合兩種混合物質,也就是混合DBPPV與硒化鎘/硫化鋅量子點而發出白光。利用此法,當DBPPV與量子點的膜厚達到0.61 μm時,其白光色度座標為(0.33, 0.36),當厚度進一步增加時,其白光色度座標變化到(0.43, 0.46)。使用混合DBPPV與硒化鎘/硫化鋅量子點的方式,其發光光譜顯示有超過90%的藍光有效轉化成綠光及紅光。
In this dissertation, patterned sapphire substrates (PSS) are fabricated using photolithography and dry etching. The crystalline quality of GaN epilayer was estimated via high-resolution X-ray diffraction and transmission electron microscopy. According to the results, the dislocation densities of GaN epilayer grown on the PSS were lower than that of on the conventional sapphire substrates (CSS). When the LEDs were operated at an injection current of 20 mA at room temperature, the output power and external quantum efficiency were estimated to be 11.2/8.9 mW and 20.9/16.5% for PSS and CSS, respectively. In addition, the PSS owns smaller junction temperature and thermal resistance compare with the CSS.
Sometimes, the reliability will suffer a few problems in the actual application such as electrostatic discharge (ESD). In this study, an InGaN-based LED combined with a metal-oxide semiconductor (MOS) capacitor has been fabricated for high ESD protection. Using this method, a level of defense against the ESD is significantly strengthened from 200 to 1900 V of human body model, which corresponds to 6- to 7-fold enhancement in the ESD robustness of LEDs.
High light extraction efficiency and high internal quantum efficiency are adopted in order to enhance the luminous efficiency. For the high light extraction efficiency, different trimethylgallium flow rates (RTMGa) are using during the growth of p-AlGaN epilayer to facilitate a rougher p-GaN surface. The V/III ratio is decreased from 2600 to 433 with increasing RTMGa from 10 to 60 sccm to enhance vertical growth rate, resulting in the rough p-AlGaN surface. The output power of devices biased at 20 mA is 15.4, 15.9, 17.5, and 18.9 mW for RTMGa of 10, 20, 40, and 60 sccm, respectively. The external quantum efficiency of 60 sccm is 34.8 %, which corresponds to 23 % enhancement in the light output power compare to that with RTMGa of 10 sccm.
A strain relief layer (SRL) with proper Si doping is introduced in terms of the enhancement in the internal quantum efficiency. A superlattice structure of In0.08Ga0.92N/GaN SRL is grown between n-GaN and multiple quantum wells (MQWs). The blue-shift is reduced from 10 to 2.5 nm. Moreover, the electroluminescence intensity of LEDs with SRL is higher than that of LEDs without SRL. A proper Si-doped layer is simultaneously introduced in the SRL as a hole blocking layer in order to enhance the recombination probability of electron-hole pairs. It can be found that the output power is increased more than 25% for Si doping in the SRL.
In order to improve the current crowding effect doe to the insulating nature of the substrate, electron barrier layer (EBL) is introduced between n-GaN and MQWs. By means of EBL, it was found that the internal quantum efficiency can be increased due to the uniform lateral current spreading. It was found that the output power could be increased over 13% for LED with EBL. In addition, the trends in the reduction in the output power of LEDs with and without EBL were almost the same for the reliability test. It indicates that the employment of EBL is not only without reducing the reliability but also enhancing the output power.
For achieving white light emission, synthesized red-emitting CdSe/ZnS QDs in combination with the green-emitting DBPPV were dually hybridized on the blue InGaN LEDs. With a polymer/QD composite film thickness of 0.61 μm, the Commission Internationale de l’Eclairage chromaticity coordinates of the emitting light from the device attain (0.33, 0.36), and the correlated color temperature is about 5300 K. The coordinates are shifted to (0.43, 0.46) as the thickness is further increased to 0.87μm. Meanwhile, the luminescence spectrum shows that more than 90% of the blue light is effectively energy transferred to green and red lights.
[1] D. Byun, G. Kim, D. Lim, D. Lee, I. H. Choi, D. Park, and D. W. Kum, “Optimization of the GaN-buffer growth on 6H-SiC (0001),” Thin Solid Films, Vol. 289, No. 1-2, pp. 256-260, Nov. 1996.
[2] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., Vol. 81, No. 7, pp. 1246-1248, Aug. 2002.
[3] S. Nakamura, S. Pearton, and G. Fasol, “The blue laser diode,” 2nd, New York, Springer, 2000.
[4] S. J. Pearton, F. Ren, A. P. Zhang, and K. P. Lee, “Fabrication and performance of GaN electronic devices,” Mater. Sce. Eng. R, Vol. 30, No. 3-6, pp. 55-212, Dec. 2000.
[5] E. F. Schubert, “Light-emitting diodes,” 2nd, New York, Cambridge University Press, 2006.
[6] H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapour-deposited single-crystal-line GaN,” Appl. Phys. Lett., Vol. 15, No. 10, pp. 327-329, Nov. 1969.
[7] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “Electroluminescence in GaN,” J. Luminescence, Vol. 4, No. 1, pp. 63-66, Jul. 1971.
[8] H. P. Maruska, W. C. Rhines, and D. A. Stevenson, “Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence,” Mat. Res. Bull., Vol. 7, No. 8, pp. 777-781, Aug. 1972.
[9] S. Nakamura, T. Mukai, and M. Senoh, “Si- and Ge-doped GaN films grown with GaN buffer layers,” Jpn. J. Appl. Phys., Vol. 31, No. 9A, pp. L2883-L2888, Sep. 1992.
[10] T. W. Weeks, Jr., M. D. Bremser, K. S. Ailey, E. Carlson, W. G. Perry, E. L. Piner, N. A. El-Masry, and R. F. Davis, “Undoped and doped GaN thin films deposited on high-temperature monocrystalline AlN buffer layers on vicinal and on-axis α(6H)-SiC(0001) substrates via organometallic vapor phase epitaxy,” J. Mater. Res., Vol. 11, No. 4, pp. 1011-1018, Apr. 1996.
[11] A. Strittmatter, A. Krost, J. Bläsing, and D. Bimberg, “High quality GaN layers grown by metalorganic chemical vapor deposition on Si(111) substrates,” Phys. Stat. Sol. (a), Vol. 176, No. 1, pp. 611-614, Nov. 1999.
[12] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes,” Appl. Phys. Lett., Vol. 66, No. 10, pp. 1249-1251, Mar. 1995.
[13] A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, “Thick GaN epitaxial Growth with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys., Vol. 36, No. 7B, pp. L899-L902, Jul. 1997.
[14] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., Vol. 48, No. 5, pp. 353-355, Feb. 1986.
[15] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, “Effects of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1-xAlxN (0<x≤0.4) films grown on sapphire substrate by MOVPE,” J. Cryst. Growth, Vol. 98, No. 1-2, pp. 209-219, Nov. 1989.
[16] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., Vol. 28, No. 12, pp. L2112-L2114, Dec. 1989.
[17] S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys., Vol. 30, No. 10A, pp. L1705-L1707, Oct. 1991.
[18] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys., Vol. 31, No. 5A, pp. 1258-1266, May 1992.
[19] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., Vol. 31, No. 2B, pp. L139-L142, Feb. 1992.
[20] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., Vol. 64, No. 13, pp. 1687-1689, Mar. 1994.
[21] T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Nagai, S. Yamasaki, S. Asami, N. Shibata, and M. Koike, “Schottky barriers and contact resistances on p-type GaN,” Appl. Phys. Lett., Vol. 69, No. 23, pp. 3537-3539, Dec. 1996.
[22] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys., Vol. 81, No. 3, pp. 1315-1322, Feb. 1997.
[23] J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, “Zinc-indium-oxide: a high conductivity transparent conducting oxide,” Appl. Phys. Lett., Vol. 67, No. 15, pp. 2246-2248, Oct. 1995.
[24] K. M. Uang, S. J. Wang, S. L. Chen, C. K. Wu, S. C. Chang, T. M. Chen and B. W. Liou, “High-power GaN-based light-emitting diodes with transparent indium zinc oxide films,” Jpn. J. Appl. Phys., Vol. 44, No. 4B, pp.2516-2519, Apr. 2005.
[25] S. J. Wang, S. L. Chen, K. M. Uang, W. C. Lee, T. M. Chen, C. H. Chen, and B. W. Liou, “The use of transparent conducting indium-zinc oxide film as a current spreading layer for vertical-structured high-power GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett., Vol. 18, No. 10. pp. 1146-1148, May 2006.
[26] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett., Vol. 74, No. 26, pp. 3930-3932, Jun. 1999.
[27] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett., Vol. 79, No. 18, pp. 2925-2927, Oct. 2001.
[28] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys., Vol. 86, No. 8, pp. 4491-4497, Oct. 1999.
[29] Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, N. Shibata, and M. Murakami, “Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts to p-type GaN,” J. Electron. Mater., Vol. 28, No. 3, pp. 341-346, Mar. 1999.
[30] J. O Song, K. K. Kim, S. J. Park, and T. Y. Seong, “Highly low resistance and transparent Ni/ZnO ohmic contacts to p-type GaN,” Appl. Phys. Lett., Vol. 83, No. 3, pp. 479-481, Jul. 2003.
[31] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys., Vol. 83, No. 6, pp. 3172-3175, Mar. 1998.
[32] H. M. Manasevit, “Single-crystal gallium arsenide on insulating substrates,” Appl. Phys. Lett., Vol. 12, No. 4, pp. 156-159, Feb. 1968.
[33] H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, “The use of metalorganics in the preparation of semiconductor materials,” J. Electrochem. Soc., Vol. 118, No. 11, pp. 1864-1868, Nov. 1971.
[34] J. I. Nishizawa, H. Abe, and T. Kurabayashi, “Molecular layer epitaxy,” J. Electrochem. Soc., Vol. 132, No. 5, pp. 1197-1200, May 1985.
[35] S. P. DenBaars, B. Y. Maa, P. D. Dapkus, A. D. Danner, and H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD,” J. Cryst. Growth, Vol. 77, No. 1-3, pp, 188-193, Sep. 1986.
[36] Jacques I. Editor, and Theodore D. Moustakas, “Gallium Nitride (GaN) I,” 1998.
[37] Y. Xi, J. -Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods,” Appl. Phys. Lett., Vol. 86, No. 3, pp. 031907-1–031907-3, Jan. 2005.
[38] Y. Xi, Th. Gessmann, J. -Q. Xi, J. K. Kim, J. M. Shah, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction temperature in ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys., Vol. 44, No. 10, pp. 7260-7266, Oct. 2005.
[39] J. E. Vinson, and J. J. Liou, “Electrostatic discharge in semiconductor devices: an overview,” Proceedings of the IEEE, Vol. 86, No. 2, pp. 399-418, Feb. 1998.
[40] T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys., Vol. 38, No. 7A, pp. 3976-3981, Jul. 1999.
[41] P. T. Barletta, E. A. Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, “Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures,” Appl. Phys. Lett., Vol. 90, No. 15, pp. 151109-1–151109-3, Apr. 2007.
[42] F. Hide, P. Kozodoy, S. P. DenBaars, and A. J. Heeger, “White light from InGaN/conjugated polymer hybrid light-emitting diodes,” Appl. Phys. Lett., Vol. 70, No. 20, pp. 2664-2666, May 1997.
[43] D. Cherns, S. J. Henley, and F. A. Ponce, “Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence,” Appl. Phys. Lett., Vol. 78, No. 18, pp. 2691-2693, Apr. 2001.
[44] S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN p-n junction blue-light-emitting diodes,” Jpn. J. Appl. Phys., Vol. 30, No. 12A, pp. L1998-L2001, Dec. 1991.
[45] K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, and I. G. Chen, “Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 85, No. 3, pp. 401-403, Jul. 2004.
[46] T. Ito, K. Ohtsuka, K. Kuwahara, M. Sumiya, Y. Takano, and S. Fuke, “Effect of AlN buffer layer deposition conditions on the properties of GaN layer,” J. Cryst. Growth, Vol. 205, No. 1-2, pp. 20-24, Aug. 1999.
[47] S. C. Wei, Y. K. Su, S. J. Chang, S. M. Chen, and W. L. Li, “Nitride-based MQW LEDs with multiple GaN-SiN nucleation layers,” IEEE Trans. Electron. Devices, Vol. 52, No. 6, pp. 1104-1109, Jun. 2005.
[48] C. H. Liu, R. W. Chuang, S. J. Chang, Y. K. Su, C. H. Kuo, J. M. Tsai, and C. C. Lin, “InGaN/GaN MQW blue LEDs with GaN/SiN double buffer layers,” Mater. Sci. Eng. B, Vol. 111, No. 2-3, pp. 214-217, Aug. 2004.
[49] O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett., Vol. 71, No. 18, pp. 2638-2640, Nov. 1997.
[50] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett., Vol. 72, No. 2, pp. 211-213, Jan. 1998.
[51] K. Linthicum, T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal, T. Smith, D. Batchelor, and R. Davis, “Pendeoepitaxy of gallium nitride thin films,” Appl. Phys. Lett., Vol. 75, No. 2, pp. 196-198, Jul. 1999.
[52] T. S. Zheleva, S. A. Smith, D. B. Thomson, T. Gehrke, K. J. Linthicum, P. Rajagopal, E. Carlson, W. M. Ashmawi, and R. F. Davis, “Pendeo-epitaxy – a new approach for lateral growth of gallium nitride structures,” MRS Internet J. Nitride Semicond. Res. 4S1, G3.38, 1999.
[53] I. Kidoguchi, A. Ishibashi, G. Sugahara, and Y. Ban, “Air-bridged lateral epitaxial overgrowth of GaN thin films,” Appl. Phys. Lett., Vol. 76, No. 25, pp. 3768-3770, Jun. 2000.
[54] A. Ishibashi, I. Kidoguchi, G. Sugahara, and Y. Ban, “High-quality GaN films obtained by air-bridged lateral epitaxial growth,” J. Cryst. Growth, Vol. 221 No. 1-4, pp. 338-344, Dec. 2000.
[55] A. Strittmatter, S. Rodt, L. Reißmann, D. Bimberg, H. Schröder, E. Obermeier, T. Riemann, J. Christen, and A. Krost, “Maskless epitaxial lateral overgrowth of GaN layers on structured Si(111) substrates,” Appl. Phys. Lett., Vol. 78, No. 6, pp. 727-729, Feb. 2001.
[56] S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennéguės, E. W. J. M. van der Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates,” J. Cryst. Growth, Vol. 248, pp. 568-572, Feb. 2003.
[57] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates uaing metalorganic vapor phase epitaxy,” Phys. Stat. Sol. (a), Vol. 188, No. 1, pp. 121-125, Nov. 2001.
[58] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown of patterned sapphire substrates,” IEEE Photon. Technol. Lett., Vol. 17, No. 2, pp. 288-290, Feb. 2005.
[59] S. W. Lee, D. C. Oh, H. Goto, J. S. Ha, H. J. Lee, T. Hanada, M. W. Cho, T. Yao, S. K. Hong, H. Y. Lee, S. R. Cho, J. W. Choi, J. H. Choi, J. H. Jang, J. E. Shin, and J. S. Lee, “Origin of forward leakage current in GaN-based light-emitting devices,” Appl. Phys. Lett., Vol. 89, No. 13, pp. 132117-1–132117-3, Sep. 2006.
[60] D. S. Li, H. Chen, H. B. Yu, H. Q. Jia, Q. Huang, and J. M. Zhou, “Dependence of leakage current on dislocations in GaN-based light-emitting diodes,” J. Appl. Phys., Vol. 96, No. 2, pp. 1111-1114, Jul. 2004.
[61] X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett., Vol. 23, No. 9, pp. 535-537, Sep. 2002.
[62] M. Fukuda: Reliability and Degradation of Semiconductor Lasers and LEDs, Boston 1991.
[63] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO),” J. Cryst. Growth, Vol. 221, No.1-4, pp. 316-326, Dec. 2000.
[64] Y. Honda, Y. Iyechika, T. Maeda, H. Miyake, and K. Hiramatsu, “Transmission electron microscopy investigation of dislocations in GaN layer grown by facet-controlled epitaxial lateral overgrowth,” Jpn, J. Appl. Phys., Vol. 40, No. 4A, pp. L309-L312, Apr. 2001.
[65] J. M. Shah, Y. L. Li, Th. Gessmann, and E. F. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n>>2.0) in AlGaN/GaN p-n junction diodes,” J. Appl. Phys., Vol. 94, No. 4, pp. 2627-2630, Aug. 2003.
[66] D. J. Dumin and G. L. Pearson, “Properties of Gallium Arsenide diodes between 4.2 and 300 K,” J. Appl. Phys., Vol. 36, No. 11, pp. 3418-3426, Nov. 1965.
[67] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speak, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Appl. Phys. Lett., Vol. 81, No. 1, pp. 79-81, Jul. 2002.
[68] S. Todoroki, M. Sawai, and K. Aiki, “Temperature distribution along the striped active region in high-power GaAlAs visible lasers,” J. Appl. Phys., Vol. 58, No. 3, pp. 1124-1128, Aug. 1985.
[69] H. I. Abdelkader, H. H. Hausien, and J. D. Martin, “Temperature rise and thermal rise-time measurements of a semiconductor laser diode,” Rev. Sci. Instrum. Vol. 63, No. 3, pp. 2004-2007, Mar. 1992.
[70] S. Murata, and H. Nakada, “Adding a heat bypass improves the thermal characteristics of a 50 μm spaced 8-beam laser diode array,” J. Appl. Phys., Vol. 72, No. 6, pp. 2514-2516, Sep. 1992.
[71] P. W. Epperlein, and G. L. Bona, “Influence of the vertical structure on the mirror facet temperatures of visible GaInP quantum well lasers,” Appl. Phys. Lett., Vol. 62, No. 24, pp. 3074-3076, Jun. 1993.
[72] D. C. Hall, L. Goldberg, and D. Mehuys, “Technique for lateral temperature profiling in optoelectronic devices using a photoluminescence microprobe,” Appl. Phys. Lett., Vol. 61, No. 4, pp. 384-386, Jul. 1992.
[73] Y. Xi, and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett., Vol. 85, No. 12, pp. 2163-2165, Sep. 2004.
[74] Agilent Technologies, Application Note 1005, 1999.
[75] D. Kotchetkov, J. Zou, A. A. Balandin, D. I. Florescu, and F. H. Pollak, “Effect of dislocations on thermal conductivity of GaN layers,” Appl. Phys. Lett., Vol. 79, No. 26, pp. 4316-4318, Dec. 2001.
[76] S. Nakamua, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys., Vol. 34, No. 7A, pp. L797-L799, July 1995.
[77] M. Koike, N. Shibata, H. Kato, and Y. Takahashi, “Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications,” IEEE J. Sel. Top. Quantum Electron., Vol. 8, No. 2, pp. 271-277, Mar./Apr. 2002.
[78] Y. B. Lee, T. Wang, Y. H. Liu, J. P. Ao, Y. Izumi, Y. Lacroix, H. D. Li, J. Bai, Y. Naoi, and S. Sakai, “High-performance 348 nm AlGaN/GaN-based ultraviolet-light-emitting diode with a SiN buffer layer,” Jpn. J. Appl. Phys., Vol. 41, No. 7A, pp. 4450-4453, July 2002.
[79] H. C. Lin, R. S. Lin, and J. I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment,” Appl. Phys. Lett., Vol. 92, No. 16, pp. 161113-1 – 161113-3, Apr. 2008.
[80] I. K. Park, M. K. Kwon, J. O. Kim, S. B. Seo, J. Y. Kim, S. J. Park, and Y. S. Kim, “Green light-emitting diodes with self-assembled In-rich InGaN quantum dots,” Appl. Phys. Lett., Vol. 91, No. 13, pp. 133105-1 – 133105-3, Sep. 2007.
[81] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting Technology,” IEEE J. Sel. Top. Quantum Electron., Vol. 8, No. 2, pp. 310-320, Mar./Apr. 2002.
[82] I. K. Park, J. Y. Kim, M. K. Kwon, C. Y. Cho, J. H. Lim, and S. J. Park, “Phosphor-free white light-emitting diode with laterally distributed multiple quantum wells,” Appl. Phys. Lett., Vol. 92, No. 9, pp. 091110-1 – 091110-3, Mar. 2008.
[83] D. M. Yeh, C. F. Huang, Y. C. Lu, and C. C. Yang, “White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode,” Appl. Phys. Lett., Vol. 92, No. 9, pp. 091112-1 – 091112-3, Mar. 2008.
[84] G. Meneghesso, S. Podda, and M. Vanzi, “Investigation on ESD-stressed GaN/InGaN-on-sapphire blue LEDs,” Microelectronics Reliability, Vol. 41, pp. 1609-1614, 2001.
[85] T. Inoue, “Light-emitting devices,” Japanese Patent H11-040-848 (in Japanese).
[86] M. R. Krames, J. Bhat, D. Collins, N. F. Gardner, W. Götz, C. H. Lowery, M. Ludowise, P. S. Martin, G. Mueller, R. Mueller-Mach, S. Rudaz, D. A. Steigerwald, S. A. Stockman, and J. J. Wierer, “High-power III-nitride emitters for solid-state lighting, ” Phys. Stat. Sol. (a), Vol. 192, No. 2, pp. 237-245, Jun. 2002.
[87] G. S. Hung, H. C. Kuo, M. H. Lo, T. C. Lu, J. Y. Tsai, and S. C. Wang, “Improvement of efficiency and ESD characteristics of ultraviolet light-emitting diodes by inserting AlGaN and SiN burrer layers,” J. Cryst. Growth, Vol. 305, pp. 55-58, Apr. 2007.
[88] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu, and S. C. Chen, “Improved ESD protection by combining InGaN-GaN MQW LEDs with GaN schottky diodes,” IEEE Electron Device Lett., Vol. 24, No. 3, pp. 129-131, Mar. 2003.
[89] C. H. Chen, S. J. Chang, and Y. K. Su, “High electrostatic discharge protection of InGaN/GaN MQW LEDs by using GaN Schottky diodes,” Phys. Stat. Sol. (a), Vol. 200, No. 1, pp. 91-94, Nov. 2003.
[90] Y. K. Su, S. J. Chang, S. C. Wei, S. M. Chen, and W. L. Li, “ESD engineering of nitride-based LEDs,” IEEE Trans. Dev. Mater. Reliab., Vol. 5, No. 2, pp. 277-281, Jun. 2005.
[91] C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo, and Y. K. Su, “High efficiency and improved ESD characteristics of GaN-based LEDs with naturally textured surface grown by MOCVD,” IEEE Photon. Technol. Lett., Vol. 18, No. 11, pp. 1213-1215, Jun. 2006.
[92] S. C. Shei, J. K. Sheu, and C. F. Shen, “Improved reliability and ESD characteristics of flip-chip GaN-based LEDs with internal inverse-parallel protection diodes,” IEEE Electron Device Lett., Vol. 28, No. 5, pp. 346-349, May 2007.
[93] S. J. Chang, C. F. Shen, S. C. Shei, R. W. Chuang, C. S. Chang, W. S. Chen, T. K. Ko, and J. K. Sheu, “Highly reliable nitride-based LEDs with internal ESD protection diodes,” IEEE Trans. Dev. Mater. Reliab., Vol. 6, No. 3, pp. 442-447, Sep. 2006.
[94] H. Kuan, “High electrostatic discharge protection using multiple Si:N/GaN and Si:N/Si:GaN layers in GaN-based light emitting diodes,” Jpn. J. Appl. Phys., Vol. 47, No. 3, pp. 1544-1546, Mar. 2008.
[95] L. W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai, and J. K. Sheu, “In0.23Ga0.77N/GaN MQW LEDs with a low temperature GaN cap layer,” Solid-State Electron., Vol. 47, pp. 2027-2030, May 2003.
[96] Y. Kawakami, Y. Narukawa, K. Omae, Sg. Fujita, and S. Nakamura, “Dimensionality of excitons in InGaN-based light emitting devices,” Phys. Stat. Sol. (a), Vol. 178, No. 1, pp. 331-336, Mar. 2002.
[97] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography,” Appl. Phys. Lett., Vol. 86, No. 22, pp. 221101-1–221101-3, May 2005.
[98] P. C. Tsai, R. W. Chuang, and Y. K. Su, “Lifetime tests and junction-temperature measurement of InGaN light-emitting diodes using patterned sapphire substrates,” J. Lightwave Technol., Vol. 25, No. 2, pp. 591-596, Feb. 2007.
[99] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photon. Technol. Lett., Vol. 18, No. 10, pp. 1152-1154, May 2006.
[100] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, “Light-output enhancement in a nitride-based light-emitting diode with 22° undercut sidewalls,” IEEE Photon. Technol. Lett., Vol. 17, No. 1, pp. 19-21, Jun. 2005.
[101] C. F. Lin, Z. J. Yang, J. H. Zheng, and J. J. Dai, “Enhanced light output in nitride-based light-emitting diodes by roughening the mesa sidewall,” IEEE Photon. Technol. Lett., Vol. 17, No. 10, pp. 2038-2040, Oct. 2005.
[102] J. Y. Kim, M. K. Kwon, J. P. Kim, and S. J. Park, “Enhanced light extraction from triangular GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett., Vol. 19, No. 23, pp. 1865-1867, Dec. 2007.
[103] J. K. Kim, T. Gessmann, E. F. Schubert, J. -Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett., Vol. 88, No. 1, pp. 013501-1–013501-3, Jan. 2002.
[104] C, L. Lin, P. H. Chen, C. H. Chan, C. C. Lee, C. C. Chen, J. Y. Chang, and C. Y. Liu, “Light enhancement by the formation of an Al oxide honeycomb nanostructure on the n-GaN surface of thin-GaN light-emitting diodes,” Appl. Phys. Lett., Vol. 90, No. 24, pp. 242106-1–242106-3, Jun. 2007.
[105] T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, “III-nitride photonic crystals,” Appl. Phys. Lett., Vol. 83, No. 6, pp. 1231-1233, Aug. 2003.
[106] J. J. Wierer, D. A, Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y. -C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett., Vol. 78, No. 22, pp. 3379-3381, May 2001.
[107] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, “Nitride-based LEDs with 800 °C grown p-AlInGaN-GaN double-cap layers,” IEEE Photon. Technol. Lett., Vol. 16, No. 6, pp. 1447-1449, Jun. 2004.
[108] Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, “InGaN-GaN MQW LEDs with Si treatment,” IEEE Photon. Technol. Lett., Vol. 17, No. 8, pp. 1620-1622, Aug. 2005.
[109] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min, and S. J. Park, “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett., Vol. 18, No. 14, pp. 1512-1514, Jul. 2006.
[110] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., Vol. 93, No. 11, pp. 9383-9385, Jun. 2003.
[111] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., Vol. 84, No. 6, pp. 855-857, Feb. 2004.
[112] C. H. Liu, R. W. Chuang, S. J. Chang, Y. K. Su, L. W. Wu, and C. C. Lin, “Improved light output power of InGaN/GaN MQW LEDs by lower temperature p-GaN rough surface,” Mater. Sci. Eng. B, Vol. 112, No. 1, pp. 10-13, Sep. 2004.
[113] J. K. Sheu, G. C. Chi, and M. J. Jou, “Enhanced output power in an InGaN-GaN multiquantum-well light-emitting diode with an InGaN current-spreading layer,” IEEE Photon. Technol. Lett., Vol. 13, No. 11, pp. 1164-1166, Nov. 2001.
[114] Y. K. Su, S. J. Chang, S. C. Wei, R. W. Chuang, S. M. Chen, and W. L. Li, “Nitride-based LEDs with n--GaN current spreading layers,” IEEE Electron. Device Lett., Vol. 26, No. 12, pp. 891-893, Dec. 2005.
[115] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” J. Appl. Phys., Vol. 92, No. 5, pp. 2248-2250, Sep. 2002.
[116] N. Otsuji, K. Fujiwara, and J. K. Sheu, “Electroluminescence efficiency of blue InGaN/GaN quantum-well diodes with and without an n-InGaN electron reservoir layer,” J. Appl. Phys., Vol. 100, No. 11, pp. 113105-1–113105-7, Dec. 2006.
[117] T. E. Nee, J. C. Wang, H. T. Shen, and Y. F. Wu, “Effect of multiquantum barriers on performance of InGaN/GaN multiple-quantum-well light-emitting diodes,” J. Appl. Phys., Vol. 102, No. 3, pp. 033101-1–033101-7, Aug. 2007.
[118] M. Diagne, Y. He, H. Zhou, E. Makarona, A. V. Nurmikko, J. Han, K. E. Waldrip, J. J. Figiel, T. Takeuchi, and M. Krames, “Vertical cavity violet light emitting diode incorporating an aluminum gallium nitride distributed Bragg mirror and a tunnel junction,” Appl. Phys. Lett., Vol. 79, No. 22, pp. 3720-3722, Nov. 2001.
[119] K. Kumakura and N. Kobayashi, “Increased electrical activity of Mg-acceptors in AlxGa1-xN/GaN superlattices,” Jap. J. Appl. Phys., Vol. 38, No. 9A/B, pp. L1012-L1014, Sep. 1999.
[120] B. N. Pantha, J. Li, J. Y. Lin, and H. X, Jiang, “Single phase InxGa1-xN (0.25≦x≦0.63) alloys synthesized by metal organic chemical vapor deposition,” Appl. Phys. Lett., Vol. 93, No. 18, pp. 182107-1–182107-3, Nov. 2008.
[121] F. Scholz, A. Sohmer, J. Off, V. Syganow, A. Dörnen, J. -S. Im, A. Hangleiter, and H. Lakner, “In incorporatin efficiency and composition fluctuations in MOVPE grown GaInN/GaN hetero structures and quantum wells,” Mater. Sci. Eng. B, Vol. 50, No. 1-3, pp. 238-244, Dec. 1997.
[122] T. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jap. J. Appl. Phys., Vol. 36, No. 4A, pp. L382-L385, Apr. 1997.
[123] N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, and S. Guangdi, “Improved quality of InGaN/GaN multiple quantum wells by a strain relief layer,” J. Cryst. Growth, Vol. 286, No. 2, pp. 209-212, Jan. 2006.
[124] E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett., Vol. 90, No. 3, pp. 031102-1–031102-3, Jun. 2006.
[125] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett., Vol. 76, No. 23, pp. 3421-3423, Jun. 2000.
[126] J. S. Speck and S. J. Rosner, “The role of threading dislocations in the physical properties of GaN and its alloys,” Phys. B, Vol. 273-274, pp. 24-32, Dec. 1999.
[127] H. K. Cho, J. Y. Lee, K. S. Kim, and G. M. Yang, “Superlattice-like stacking fault and phase separation of InxGa1-xN grown on sapphire substrate by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 77, No. 2, pp. 247-249, Jul. 2000.
[128] T. Kuroda and A. Tackeuchi, “Influence of free carrier screening on the luminescence energy shift and carrier lifetime of InGaN quantum wells,” J. Appl. Phys., Vol. 92, No. 6, pp. 3071-3074, Sep. 2002.
[129] X. Guo, and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys., Vol. 90, No. 8, pp. 4191-4195, Oct. 2001.
[130] I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek Jr., “InGaN blue light-emitting diodes with optimized n-GaN layer,” in Proc. SPIE, Vol. 3621, pp. 28-36, Jan. 1999.
[131] H. Kim, J. M. Lee, C. Huh. S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett., Vol. 77, No. 12, pp. 1903-1905, Sep. 2000.
[132] H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-based light-emitting diodes,” IEEE Trans. Electron. Devices, Vol. 48, No. 6, pp. 1065-1069, Jun. 2001.
[133] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” J. Appl. Phys. Vol. 92, No. 5, pp. 2248-2250, Sep. 2002.
[134] J. W. Ju, E. S. Kang, H. S. Kim, L. W. Jang, H. K. Ahn, J. W. Jeon, and I. H. Leea, “Metal-organic chemical vapor deposition growth of InGaN/GaN high power green light emitting diode: Effects of InGaN well protection and electron reservoir layer,” J. Appl. Phys. Vol. 102, No. 5, pp. 053519-1 – 053519-4, Sep. 2007.
[135] Philips Lumileds lighting company: Application brief AB22, Document No.: AP22 (07/15/02)
[136] E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett., Vol. 90, No. 3, pp. 031102-1 – 031102-3, Jan. 2006.
[137] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys. Vol. 86, No. 1, pp. 1-78, Jul. 1999.
[138] C. R. Abernathy, J. D. Mackenzie, S. J. Pearton, and W. S. Hobson, “CCl4 doping of GaN grown by metalorganic molecular beam epitaxy,” Appl. Phys. Lett., Vol. 66, No. 15, pp. 1969-1971, Apl. 1995.
[139] P. Reiss, J. Bleuse, and A. Pron, “Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion,” Nano Lett., Vol. 2, No. 7, pp. 781-784, Jul. 2002.
[140] M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett., Vol. 6, No. 7, pp. 1396-1400, Jul. 2006.
[141] Y. Narukawa, I. Niki, K. Kunihiro, M. Yamada, Y. Murazaki, and T. Mukai, “Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip,” Jpn. J. Appl. Phys., Vol. 41, No. 4A, pp. L371-L373, Apr. 2002.
[142] S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, “White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology, Vol. 18, No. 6 pp. 065709-1-065709-5, Feb. 2007.
[143] H. S. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, W. Y. Shiao, J. J. Huang, C. C. Yang, I. S. Liu, and W. F. Su, “White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode,” IEEE Photon, Technol. Lett., Vol. 18, No. 13, pp. 1430-1432, Jul. 2003.
[144] J. H. Park, J. Y. Kim, B. D. Chin, Y. C. Kim, and O. O. Park, “White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer,” Nanotechnology, Vol. 15, No. 9, pp. 1217-1220, Sep. 2004.
[145] Y. Li, A. Rizzo, R. Cingolani, and G. Gigli, “White-light-emitting diodes using semiconductor nanocrystals,” Microchim. Acta, Vol. 159, No. 3/4, pp. 207-215, Jul. 2007.
[146] H. V. Demir, S. Nizamoglu, T. Ozel, E. Sari, and N. Tian, “White light generation tuned by dual hybridization of nanocrystals and conjugated polymers,” New J. Phys., Vol. 9, No. 10. pp. 362-1 – 362-13, Oct. 2007.
[147] C. Y. Huang, Y. K. Su, T. C. Wen, T. F. Guo, and M. L. Tu, “Single-layered hybrid DBPPV-CdSe-ZnS quantum-dot light-emitting diodes, ” IEEE Photon, Technol. Lett., Vol. 20, No. 4, pp. 282-284, Feb. 2008.
[148] F. Kong, X. L. Wu, R. K. Yuan, C. Z. Yang, G. G. Siu, and P. K. Chu, “Optical emission from the aggregated state in poly [2-methoxy-5-(2’-ethyl-hexyloxy)-p-phenylene vinylene,” J. Vac. Sci. Technol. A, Vac. Surf. Films, Vol. 24, No. 2, pp. 202-205, Mar./Apr. 2006.
[149] J. Liu, T. F. Guo, and Y. Yang, “Effects of thermal annealing on the performance of polymer light emitting diodes,” J. Appl. Phys., Vol. 91, No. 3, pp. 1595-1600, Feb. 2002.
[150] H. Y. Low, “Photo and photo-oxidative degradations of poly (phenylene vinylent),” Thin Solid Films, Vol. 413, No. 1/2, pp. 160-166, Jun. 2002.
[151] X. Y. Deng, K. Y. Wong, and Y. Q. Mo, “Three-color polymeric light-emitting devices using selective photo-oxidation of multilayered conjugated polymers,” Appl. Phys. Lett., Vol. 90, No. 6, pp. 063505-1 – 063505-3, Feb. 2007.
[152] C. Zhang and A. Heeger, “Gallium nitride/conjugated polymer hybrid light emitting diode: performance and lifetime”, J. Appl. Phys. Vol. 84, No. 3, pp. 1579-1582, August 1998.
校內:2015-08-06公開