簡易檢索 / 詳目顯示

研究生: 曹多雯
Tsao, To-Wen
論文名稱: 氧化銫鎢/還原氧化石墨烯/PEDOT:PSS奈米複合物之製備及其在可撓式全固態透明超級電容器之應用
Fabrication of CsxWO3/reduced graphene oxide/PEDOT:PSS nano-hybrids for flexible all-solid-state transparent supercapacitors
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 124
中文關鍵詞: 氧化銫鎢還原氧化石墨烯聚二氧乙基噻吩:聚苯乙烯磺酸可撓透明超級電容器
外文關鍵詞: cesium tungsten bronze, reduced graphene oxide, ploy(3,4-ethylenedioxythiophene:sulfonated polystyrene, flexible, transparent, supercapacitor
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係有關氧化銫鎢/還原氧化石墨烯/聚二氧乙基噻吩:聚苯乙烯磺酸(CsxWO3/rGO/PEDOT:PSS)奈米複合物之製備及其在可撓式全固態透明超級電容器之應用。首先以一步溶熱法於200ºC反應20小時製備出CsxWO3/ rGO新穎奈米複合材料,結果顯示,藉由rGO作為基材可有效地避免CsxWO3聚集。接著將上述粉體與PEDOT:PSS-EG溶液混合形成良好之分散液,PEDOT:PSS經EG修飾後因屏蔽效應使結構重排為線性結構,電化學特性大幅提升。再者將CsxWO3/rGO/PEDOT:PSS-EG分散液以滴鑄法塗佈於碳紙上作為電極,於固定PEDOT比例下,觀察CsxWO3之循環伏安圖形具一對氧化還原峰,證實其贋電容特性。為了符合透明、可撓之目標,亦將分散液以刮刀法塗佈於ITO上作為可撓式透明電極,藉由面電阻、透光性、電容特性分析找出最適化塗佈層數。最後成功地以聚乙烯醇/硫酸(PVA/H2SO4)作為膠態電解質,並與兩片電極組裝成對稱型可撓式全固態透明超級電容器,其於電流密度0.05 mA/cm2下之比電容值為1.79 mF/cm2,其電化學性能於彎折時皆可保留,經3000個循環後仍有約98%之初始電容值,具有發展為可撓式全固態透明超級電容器之潛力。

    This thesis concerns the fabrication of flexible all-solid-state transparent supercapacitors with CsxWO3/rGO/PEDOT:PSS. Firstly, CsxWO3 nanorods-decorated reduced graphene oxide (CsxWO3/rGO) has been successfully synthesized via a facile one-step solvothermal reaction at 200ºC for 20 h. It was shown that the use of rGO as a support could effectively avoid the aggregation of CsxWO3 nanorods. Secondly, CsxWO3/rGO was added to PEDOT:PSS and EG to yield homogeneous dispersion. The EG treatment screened the ionic interaction between PEDOT and PSS, and the chains structure was reoriented linearly, which could enhanced the electrochemical performance. Then, CsxWO3/rGO/PEDOT:PSS-EG dispersion was drop-casted on carbon paper as electrode, the pseudo-capacitance characteristics of CsxWO3 was observed with a pair of redox peaks at a fixed PEDOT:PSS ratio. Thirdly, CsxWO3/rGO/PEDOT:PSS dispersion was blade-coated on ITO as flexible transparent electrode, and the optimum coating layer was obtained through sheet resistance, transmittance and capacitance analysis. Furthermore, symmetric flexible all-solid-state transparent supercapacitors were fabricated with the integration of two electrodes and PVA/H2SO4 gel electrolyte. The result revealed that CsxWO3/rGO/PEDOT:PSS-EG supercapacitor had 1.79 mF/cm2 capacitance at a current density of 0.05 mA/cm2 and 98% capacitance retained after 3000 cycles, which demonstrated that CsxWO3/rGO/PEDOT:PSS-EG had great potential applications in the field of flexible all-solid-state transparent supercapacitors.

    總目錄 中文摘要 I Abstract III Extended abstract IIV 致謝 XIIII 總目錄 VIII 表目錄 XIII 圖目錄 XIII 第一章 緒論 1 1.1 石墨烯 1 1.1.1石墨烯之簡介 1 1.1.2 石墨烯製備 2 1.1.3 石墨烯應用 5 1.1.4 氧化石墨烯與還原氧化石墨烯 6 1.2 氧化銫鎢 9 1.2.1氧化銫鎢簡介 9 1.2.2氧化銫鎢製備 10 1.2.3氧化銫鎢應用 12 1.3 導電高分子 14 1.3.1導電高分子 14 1.3.2導電高分子PEDOT:PSS 16 1.4 超級電容器 19 1.4.1 超級電容器之簡介 19 1.4.2超級電容器以儲能機制分類 22 1.4.3超級電容器以電極材料分類 26 1.4.4超級電容器以電解質分類 36 1.4.5可撓式透明超級電容器 38 1.5 研究動機 43 第二章 基礎理論 44 2.1 水/溶熱合成法 44 2.2 循環伏安法 47 2.3 定電流充放電法 50 2.4 電化學阻抗頻譜原理 52 第三章 實驗 59 3.1實驗藥品、材料、儀器 59 3.1.1實驗藥品 59 3.1.2 實驗材料 60 3.1.3 實驗儀器 63 3.2實驗步驟 63 3.2.1 GO之製備 63 3.2.2 CsxWO3之製備 64 3.2.3 CsxWO3/rGO之製備 66 3.2.4 CsxWO3/rGO/PEDOT:PSS-EG電極材料之製備 67 3.2.5 CsxWO3/rGO/PEDOT:PSS-EG可撓透明電極材料之製備 69 3.2.6 PVA/H2SO4膠態電解質之製備與全固態超級電容器之組裝 71 3.3 特性分析 77 3.4 電化學分析 77 第四章 結果與討論 77 4.1 CsxWO3/rGO之材料鑑定 77 4.1.1 CsxWO3/rGO之形態鑑定 77 4.1.2 CsxWO3/rGO之光學鑑定 82 4.2 CsxWO3/rGO/PEDOT:PSS-EG電極之材料最佳化與電容特性分析 87 4.3 CsxWO3/rGO/PEDOT:PSS-EG可撓透明電極塗佈層數最佳化與電容特性分析 93 4.4 CsxWO3/rGO/PEDOT:PSS-EG可撓全固態透明電容器電容特性 102 第五章 結論 108 參考文獻 111   表目錄 表1.1電池、傳統電容器、超級電容器之儲能特性比較 20 表1.2電雙層電容器、贋電容器、混合式電容器之儲能特性比較 24 表1.3常見導電高分子電容特性之比較 31 表1.4導電高分子PEDOT-based複合材料電容特性之比較 31 表1.5鎢過渡金屬氧化物-based材料電容特性之比較 32 表4.1可撓全固態超級電容器電容特性之比較 107 表4.2透明可撓全固態超級電容器電容特性之比較 108

    1. Geim, A. K., Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6 (3), 183-191.
    2. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
    3. Dürkop, T., Getty, S., Cobas, E., Fuhrer, M., Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4 (1), 35-39.
    4. Geim, A. K., Graphene: status and prospects. Science 2009, 324 (5934), 1530-1534.
    5. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8 (3), 902-907.
    6. Lee, C., Wei, X., Kysar, J. W., Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321 (5887), 385-388.
    7. Pumera, M., Electrochemistry of graphene: new horizons for sensing and energy storage. Chem. Rec. 2009, 9 (4), 211-223.
    8. Sutter, P., Epitaxial graphene: How silicon leaves the scene. Nat Mater. 2009, 8 (3), 171-172.
    9. Su, C. Y., Lu, A. Y., Wu, C. Y., Li, Y. T., Liu, K. K., Zhang, W., Lin, S. Y., Juang, Z. Y., Zhong, Y. L., Chen, F. R., Li, L. J., Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett. 2011, 11 (9), 3612-3616.
    10. Brodie, B. C., On the atomic weight of graphite. Phil. Trans. 1859, 149, 249-259.
    11. Hummers Jr, W. S., Offeman, R. E., Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339-1339.
    12. Xu, Y., Bai, H., Lu, G., Li, C., Shi, G., Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130 (18), 5856-5857.
    13. Bai, H., Li, C., Shi, G., Functional composite materials based on chemically converted graphene. Adv. Mater. 2011, 23 (9), 1089-1115.
    14. Zeng, F., Ren, Y., Chen, L., Yang, Y., Li, Q., Gu, G., Hierarchical sandwich-type tungsten trioxide nanoplatelets/graphene anode for high-performance lithium-ion batteries with long cycle life. Electrochim. Acta 2016, 190, 964-971.
    15. Park, H., Rowehl, J. A., Kim, K. K., Bulovic, V., Kong, J., Doped graphene electrodes for organic solar cells. Nanotech. 2010, 21 (50), 505204.
    16. Zheng, Y., Lee, D., Koo, H. Y., Maeng, S., Chemically modified graphene/PEDOT:PSS nanocomposite films for hydrogen gas sensing. Carbon 2015, 81, 54-62.
    17. Huang, C., Li, C., Shi, G., Graphene based catalysts. Energy Environ. Sci. 2012, 5 (10), 8848.
    18. Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, M., Piner, R. D., Adamson, D. H., Schniepp, H. C., Chen, X., Ruoff, R. S., Nguyen, S. T., Aksay, I. A., Prud'Homme, R. K., Brinson, L. C., Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotech. 2008, 3 (6), 327-331.
    19. Compton, O. C., Nguyen, S. T., Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 2010, 6 (6), 711-723.
    20. Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., Dékány, I., Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 2006, 18 (11), 2740-2749.
    21. Huang, X.,Qi, X., Boey, F.,Zhang, H., Graphene-based composites. Chem. Soc. Rev. 2012, 41 (2), 666-686.
    22. Yang, P., Sun, P., Du, L., Liang, Z., Xie, W., Cai, X., Huang, L., Tan, S., Mai, W., Quantitative Analysis of Charge Storage Process of Tungsten Oxide that Combines Pseudocapacitive and Electrochromic Properties. J. Phys. Chem. C 2015, 119 (29), 16483-16489.
    23. Ma, L., Zhou, X., Xu, L., Xu, X., Zhang, L., Ye, C., Luo, J., Chen, W., Hydrothermal preparation and supercapacitive performance of flower-like WO3·H2O/reduced graphene oxide composite. Colloids Surfaces A 2015, 481, 609-615.
    24. Nagy, D., Nagy, D., Szilágyi, I. M., Fan, X., Effect of the morphology and phases of WO3 nanocrystals on their photocatalytic efficiency. RSC Adv. 2016, 6 (40), 33743-33754.
    25. Shi, F., Liu, J., Dong, X., Xu, Q., Luo, J., Ma, H., Hydrothermal Synthesis of CsxWO3 and the Effects of N2 Annealing on its Microstructure and Heat Shielding Properties. J. Mater. Sci.Technol. 2014, 30 (4), 342-346.
    26. Zeng, X., Zhou, Y.,Ji, S., Luo, H., Yao, H., Huang, X., Jin, P., The preparation of a high performance near-infrared shielding CsxWO3/SiO2composite resin coating and research on its optical stability under ultraviolet illumination. J. Mater. Chem.C 2015, 3 (31), 8050-8060.
    27. Takeda, H., Adachi, K., Near Infrared Absorption of Tungsten Oxide Nanoparticle Dispersions. J. Am. Ceram. Soc. 2007, 90 (12), 4059-4061
    28. Guo, C., Yin, S., Adachi, K., Chonan, T., Sato, T., Solvothermal Synthesis of Caesium Tungsten Bronze in the Presence of Various Organic Acids and Its NIR Absorption Properties. IOP Conf. 2011, 18 (3), 032014.
    29. Guo, C., Yin, S., Yan, M., Sato, T., Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process. J. Mater. Chem. 2011, 21 (13), 5099.
    30. Wu, X., Yin, S., Xue, D., Komarneni, S., Sato, T., A CsxWO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation. Nanoscale 2015, 7 (40), 17048-17054.
    31. Guo, C., Yin, S., Yu, H., Liu, S., Dong, Q., Goto, T., Zhang, Z., Li, Y., Sato, T., Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption. Nanoscale 2013, 5 (14), 6469-6478.
    32. Xu, W., Meng, Z., Yu, N., Chen, Z., Sun, B., Jiang, X., Zhu, M., PEGylated CsxWO3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells. RSC Adv. 2015, 5 (10), 7074-7082.
    33. Heeger, A. J., MacDiarmid, A. G., Shirakawa, H., The Nobel Prize in chemistry, 2000: conductive polymers. Roy. Swed. Acad. Sci. 2000, 1-16.
    34. Gerard, M., Chaubey, A.,Malhotra, B., Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17 (5), 345-359.
    35. Kang, T. S., Lee, S. W., Joo, J., Lee, J. Y., Electrically conducting polypyrrole fibers spun by electrospinning. Synth. Met. 2005, 153 (1-3), 61-64.
    36. Liu, J., Sun, J., Gao, L., A promising way to enhance the electrochemical behavior of flexible single-walled carbon nanotube/polyaniline composite films. J. Phys.Chem. C 2010, 114 (46), 19614-19620.
    37. Liu, R., Liu, Z., Polythiophene: Synthesis in aqueous medium and controllable morphology. Sci. Bull. 2009, 54 (12), 2028-2032.
    38. Louwet, F., Groenendaal, L., Dhaen, J., Manca, J., Van Luppen, J., Verdonck, E., Leenders, L., PEDOT/PSS: synthesis, characterization, properties and applications. Synth. Met. 2003, 135-136, 115-117.
    39. Zhao, Z., Richardson, G. F., Meng, Q., Zhu, S., Kuan, H. C., Ma, J., PEDOT-based composites as electrode materials for supercapacitors. Nanotech. 2016, 27 (4), 042001.
    40. Yoo, D., Kim, J., Kim, J. H., Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 2014, 7 (5), 717-730.
    41. Timpanaro, S., Kemerink, M., Touwslager, F., De Kok, M., Schrader, S., Morphology and conductivity of PEDOT/PSS films studied by scanning–tunneling microscopy. Chem. Phys. Lett. 2004, 394 (4), 339-343.
    42. Crispin, X., Marciniak, S., Osikowicz, W., Zotti, G.,van der Gon, A., Louwet, F., Fahlman, M., Groenendaal, L., De Schryver, F., Salaneck, W. R., Conductivity, morphology, interfacial chemistry, and stability of poly (3, 4‐ethylene dioxythiophene)–poly (styrene sulfonate): A photoelectron spectroscopy study. J. Polym. Sci. Pol. Phys. 2003, 41 (21), 2561-2583.
    43. Cheng, T., Zhang, Y.-Z., Zhang, J.-D., Lai, W.-Y., Huang, W., High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors. J. Mater. Chem. A 2016, 4 (27), 10493-10499.
    44. Meen, T.-H., Chen, K.-L., Chen, Y.-H., Chen, W.-R., Chou, D.-W., Lan, W.-H., Huang, C.-J., The Effects of Dilute Sulfuric Acid on Sheet Resistance and Transmittance in Poly(3,4-thylenedioxythiophene): Poly(styrenesulfonate) Films. Int. J. Photoenergy 2013, 2013, 1-6.
    45. Gasiorowski, J., Menon, R., Hingerl, K., Dachev, M., Sariciftci, N. S., Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives. Thin Solid Films 2013, 536 (100), 211-215.
    46. Kim, J., Jung, J., Lee, D., Joo, J., Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents. Synth. Met. 2002, 126 (2), 311-316.
    47. Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., Zhang, L., Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy 2009, 34 (11), 4889-4899.
    48. Yu, G., Xie, X., Pan, L., Bao, Z., Cui, Y., Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2 (2), 213-234.
    49. Bose, S., Kuila, T., Mishra, A. K., Rajasekar, R., Kim, N. H., Lee, J. H., Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 2012, 22 (3), 767-784.
    50. Halper, M. S., Ellenbogen, J. C., Supercapacitors: A brief overview. MITRE Corp. 2006, 1-34.
    51. Zhi, M., Xiang, C., Li, J., Li, M., Wu, N., Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 2013, 5 (1), 72-88.
    52. Jost, K., Dion, G., Gogotsi, Y., Textile energy storage in perspective. J. Mater. Chem. A 2014, 2 (28), 10776.
    53. Wang, G., Zhang, L., Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41 (2), 797-828.
    54. Xiao, N., Tan, H., Zhu, J., Tan, L., Rui, X., Dong, X., Yan, Q., High-performance supercapacitor electrodes based on graphene achieved by thermal treatment with the aid of nitric acid. ACS Appl. Mater. Interfaces 2013, 5 (19), 9656-9662.
    55. Bai, Y., Rakhi, R. B., Chen, W., Alshareef, H. N., Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance. J. Power Sources 2013, 233, 313-319.
    56. Frackowiak, E., Khomenko, V., Jurewicz, K., Lota, K., Béguin, F., Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sources 2006, 153 (2), 413-418.
    57. Snook, G. A., Kao, P., Best, A. S., Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196 (1), 1-12.
    58. Liu, Y., Zhang, Y., Ma, G., Wang, Z., Liu, K., Liu, H., Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochim. Acta 2013, 88, 519-525.
    59. Liu, Y., Weng, B., Razal, J. M., Xu, Q., Zhao, C., Hou, Y., Seyedin, S., Jalili, R., Wallace, G. G., Chen, J., High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films. Sci. Rep. 2015, 5, 17045.
    60. Lokhande, C. D., Dubal, D. P., Joo, O.-S., Metal oxide thin film based supercapacitors. Curr. Appl. Phys. 2011, 11 (3), 255-270.
    61. Qiu, M., Sun, P., Shen, L., Wang, K., Song, S., Yu, X., Tan, S., Zhao, C., Mai, W., WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J. Mater. Chem. A 2016, 4 (19), 7266-7273.
    62. Park, S., Shim, H.-W., Lee, C. W., Song, H. J., Kim, J.-C., Kim, D.-W., High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes. Nano Res. 2015, 9 (3), 633-643.
    63. Xu, J.,Li, Y., Wang, L., Cai, Q., Li, Q., Gao, B., Zhang, X., Huo, K., Chu, P. K., High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes. Nanoscale 2016, 8 (37), 16761-16768.
    64. Zhang, J., Zhao, X. S., Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes. J. Phys. Chem. C 2012, 116 (9), 5420-5426.
    65. Sun, D., Jin, L., Chen, Y., Zhang, J.-R., Zhu, J.-J., Microwave-Assisted In Situ Synthesis of Graphene/PEDOT Hybrid and Its Application in Supercapacitors. ChemPlusChem 2013, 78 (3), 227-234.
    66. Wen, J., Jiang, Y., Yang, Y.,Li, S., Conducting polymer and reduced graphene oxide Langmuir–Blodgett films: a hybrid nanostructure for high performance electrode applications. J. Mater. Sci. 2013, 25 (2), 1063-1071.
    67. Alvi, F., Ram, M. K., Basnayaka, P. A.,Stefanakos, E.,Goswami, Y.,Kumar, A., Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim. Acta 2011, 56 (25), 9406-9412.
    68. Chu, C.-Y., Tsai, J.-T., Sun, C.-L., Synthesis of PEDOT-modified graphene composite materials as flexible electrodes for energy storage and conversion applications. Int. J. Hydrogen Energy 2012, 37 (18), 13880-13886.
    69. Jiang, F., Yao, Z., Yue, R., Du, Y., Xu, J., Yang, P., Wang, C., Electrochemical fabrication of long-term stable Pt-loaded PEDOT/graphene composites for ethanol electrooxidation. Int. J. Hydrogen Energy 2012, 37 (19), 14085-14093.
    70. Chen, Y., Xu, J., Mao, Y., Yang, Y., Yang, W., Li, S., Electrochemical performance of graphene-polyethylenedioxythiophene nanocomposites. Mater. Sci. Eng. B 2013, 178 (17), 1152-1157.
    71. Tang, P., Han, L., Zhang, L., Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. ACS Appl. Mater. Interfaces 2014, 6 (13), 10506-10515.
    72. Sen, P., De, A., Chowdhury, A. D., Bandyopadhyay, S. K., Agnihotri, N., Mukherjee, M., Conducting polymer based manganese dioxide nanocomposite as supercapacitor. Electrochim. Acta 2013, 108, 265-273.
    73. Tang, P., Zhao, Y., Xu, C., Step-by-step assembled poly(3,4-ethylenedioxythiophene)/manganese dioxide composite electrodes: Tuning the structure for high electrochemical performance. Electrochim. Acta 2013, 89, 300-309.
    74. Su, Z., Yang, C., Xu, C., Wu, H., Zhang, Z., Liu, T., Zhang, C., Yang, Q., Li, B., Kang, F., Co-electro-deposition of the MnO2–PEDOT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. J. Mater. Chem. A 2013, 1 (40), 12432.
    75. Chen, J., Jia, C., Wan, Z., Novel hybrid nanocomposite based on poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes/ graphene as electrode material for supercapacitor. Synth. Met. 2014, 189, 69-76.
    76. Li, H., Wang, J., Shi, Q., Zhang, M., Hou, C., Shi, G., Wang, H., Zhang, Q., Li, Y., Chi, Q., Constructing three-dimensional quasi-vertical nanosheet architectures from self-assemble two-dimensional WO3·2H2O for efficient electrochromic devices. Appl. Surf. Sci. 2016, 380, 281-287.
    77. Shen, L., Du, L., Tan, S., Zang, Z., Zhao, C., Mai, W., Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires. Chem. C (Camb) 2016, 52 (37), 6296-6299.
    78. Zou, B.-X., Liang, Y., Liu, X.-X., Diamond, D., Lau, K.-T., Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite. J. Power Sources 2011, 196 (10), 4842-4848.
    79. Khan, M. E., Khan, M. M., Cho, M. H., Fabrication of WO3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance. RSC Adv. 2016, 6 (25), 20824-20833.
    80. Park, S. K., Lee, H. J., Lee, M. H.,Park, H. S., Hierarchically structured reduced graphene oxide/WO3 frameworks for an application into lithium ion battery anodes. Chem. Eng. J. 2015, 281, 724-729.
    81. Zhao, B., Lu, S., Zhang, X., Wang, H., Liu, J., Yan, H., Porous WO3/reduced graphene oxide composite film with enhanced electrochromic properties. Ionics 2015, 22 (2), 261-267.
    82. Jo, C., Hwang, J., Song, H., Dao, A. H., Kim, Y.-T., Lee, S. H., Hong, S. W., Yoon, S., Lee, J., Block-Copolymer-Assisted One-Pot Synthesis of Ordered Mesoporous WO3−x/Carbon Nanocomposites as High-Rate-Performance Electrodes for Pseudocapacitors. Adv. Funct. Mater. 2013, 23 (30), 3747-3754.
    83. Sun, W., Yeung, M. T., Lech, A. T., Lin, C. W., Lee, C., Li, T., Duan, X., Zhou, J., Kaner, R. B., High Surface Area Tunnels in Hexagonal WO3. Nano Lett. 2015, 15 (7), 4834-4838.
    84. Huang, X., Liu, H., Zhang, X., Jiang, H., High Performance All-Solid-State Flexible Micro-Pseudocapacitor Based on Hierarchically Nanostructured Tungsten Trioxide Composite. ACS Appl. Mater. Interfaces 2015, 7 (50), 27845-27852.
    85. Lu, X., Yu, M., Wang, G., Tong, Y., Li, Y., Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ. Sci. 2014, 7 (7), 2160.
    86. Kim, J. W., Choi, B. G., All-solid state flexible supercapacitors based on graphene/polymer composites. Mater. Chem. Phys. 2015, 159, 114-118.
    87. Hu, P., Chen, T., Yang, Y., Wang, H., Luo, Z., Yang, J., Fu, H., Guo, L., Renewable-emodin-based wearable supercapacitors. Nanoscale 2017, 9 (4), 1423-1427.
    88. Walton, R. I., Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 2002, 31 (4), 230-238.
    89. Laudise, R. A., Hydrothermal synthesis of crystals. Chem. Eng. News 1987, 65 (39), 30-43.
    90. Eckert, J. O., Hung‐Houston, C. C., Gersten, B. L., Lencka, M. M., Riman, R. E., Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J. Am. Ceram. Soc. 1996, 79 (11), 2929-2939.
    91. Bard, A. J., Faulkner, L. R., Leddy, J., Zoski, C. G., Electrochemical methods: fundamentals and applications. wiley New York: 1980; Vol. 2.
    92. Robinson, R. J., Elementary quantitative analysis. ACS Publications: 1954.
    93. Ma, G., Zhang, Z., Sun, K., Feng, E., Peng, H., Zhou, X., Lei, Z., High-performance aqueous asymmetric supercapacitor based on K0.3WO3 nanorods and nitrogen-doped porous carbon. J. Power Sources 2016, 330, 219-230.
    94. Barsoukov, E., Macdonald, J. R., Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons: 2005.
    95. Randviir, E. P., Banks, C. E., Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods 2013, 5 (5), 1098-1115.
    96. Li, G., Guo, C., Yan, M., Liu, S., CsxWO3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Appl. Catal. B: Environ. 2016, 183, 142-148.
    97. Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R., Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10 (3), 751-758.
    98. Karade, S. S., Sankapal, B. R., Room temperature PEDOT: PSS encapsulated MWCNTs thin film for electrochemical supercapacitor. J. Electroanal. Chem. 2016, 771, 80-86.

    99. Yun, J., Kim, D., Lee, G., Ha, J. S., All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon 2014, 79, 156-164.
    100. Souza, V. H. R., Oliveira, M. M., Zarbin, A. J. G., Bottom-up synthesis of graphene/polyaniline nanocomposites for flexible and transparent energy storage devices. J. Power Sources 2017, 348, 87-93.
    101. Lee, C. S., Yoo, J. E., Shin, K., Park, C. O., Bae, J., Carbon nanotube-silver nanowire composite networks on flexible substrates: High reliability and application for supercapacitor electrodes. Phys. Status. Solidi. (a) 2014, 211 (12), 2890-2897.
    102. Liu, L., Ye, D., Yu, Y., Liu, L., Wu, Y., Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching. Carbon 2017, 111, 121-127.
    103. Kolathodi, M. S., Natarajan, T. S., Development of high-performance flexible solid state supercapacitor based on activated carbon and electrospun TiO2 nanofibers. Scripta Mater. 2015, 101, 84-86.
    104. Zhou, X., Wang, A., Pan, Y., Yu, C., Zou, Y., Zhou, Y., Chen, Q., Wu, S., Facile synthesis of a Co3O4@carbon nanotubes/polyindole composite and its application in all-solid-state flexible supercapacitors. J. Mater. Chem. A 2015, 3 (24), 13011-13015.
    105. Ma, Y.,Wang, M.,Kim, N.,Suhr, J.,Chae, H., A flexible supercapacitor based on vertically oriented ‘Graphene Forest’ electrodes. J. Mater. Chem. A 2015, 3 (43), 21875-21881.
    106. Wang, S., Liu, N., Yang, C., Liu, W., Su, J., Li, L., Yang, C., Gao, Y., Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors. RSC Adv. 2015, 5 (104), 85799-85805.
    107. Zhi, J., Zhao, W., Liu, X., Chen, A., Liu, Z., Huang, F., Highly Conductive Ordered Mesoporous Carbon Based Electrodes Decorated by 3D Graphene and 1D Silver Nanowire for Flexible Supercapacitor. Adv. Funct. Mater. 2014, 24 (14), 2013-2019.
    108. Gao, Y., Zhou, Y. S., Qian, M., Li, H. M., Redepenning, J., Fan, L. S., He, X. N., Xiong, W., Huang, X., Majhouri-Samani, M., Jiang, L., Lu, Y. F., High-performance flexible solid-state supercapacitors based on MnO2-decorated nanocarbon electrodes. RSC Adv. 2013, 3 (43), 20613.
    109. Park, J. W., Park, S. J., Kwon, O. S., Lee, C., Jang, J., Jang, J., Park, J. W., Park, S. J., Lee, C., Kwon, O. S., In Situ Synthesis of Graphene/Polyselenophene Nanohybrid Materials as Highly Flexible Energy Storage Electrodes. Chem. Mater. 2014, 26 (7), 2354-2360.
    110. Luo, J., Fan, F. R., Jiang, T., Wang, Z., Tang, W., Zhang, C., Liu, M., Cao, G., Wang, Z. L., Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 2015, 8 (12), 3934-3943.
    111. Huang, Y., Zhu, M., Meng, W., Fu, Y., Wang, Z., Huang, Y., Pei, Z., Zhi, C., Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv. 2015, 5 (43), 33981-33989.
    112. de Souza, V. H. R., Oliveira, M. M., Zarbin, A. J. G., Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid–liquid interfaces. J. Power Sources 2014, 260, 34-42.
    113. Peng, L., Peng, X., Liu, B., Wu, C., Xie, Y., Yu, G., Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13 (5), 2151-2157.
    114. Liu, X. Y., Gao, Y. Q., Yang, G. W., A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes. Nanoscale 2016, 8 (7), 4227-4235.
    115. Navarrete-Astorga, E., Rodríguez-Moreno, J., Dalchiele, E. A., Schrebler, R., Leyton, P., Ramos-Barrado, J. R., Martín, F., A transparent solid-state ion gel for supercapacitor device applications. J. Solid State Electr. 2017, 21 (5), 1431-1444.
    116. Moon, H., Lee, H., Kwon, J., Suh, Y. D., Kim, D. K., Ha, I., Yeo, J., Hong, S., Ko, S. H., Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices. Sci. Rep. 2017, 7, 41981.
    117. Lin, H., Li, L., Ren, J., Cai, Z., Qiu, L., Yang, Z., Peng, H., Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor. Sci. Rep. 2013, 3, 1353.
    118. Ryu, I., Kim, G., Park, D., Yim, S., Ethanedithiol-treated manganese oxide nanoparticles for rapidly responsive and transparent supercapacitors. J. Power Sources 2015, 297, 98-104.
    119. Chen, P.-C., Shen, G., Sukcharoenchoke, S., Zhou, C., Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Appl. Phys. Lett. 2009, 94 (4), 043113.
    120. Li, N., Huang, X., Zhang, H., High energy density transparent and flexible asymmetric supercapacitor based on a transparent metal hydroxides@graphene micro-structured film via a scalable gas-liquid diffusion method. J. Alloys Compd. 2017, 712, 194-203.
    121. Zhang, C., Higgins, T. M., Park, S.-H.,O'Brien, S. E., Long, D., Coleman, J. N., Nicolosi, V., Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy 2016, 28, 495-505.
    122. Lee, H., Hong, S., Lee, J., Suh, Y. D., Kwon, J., Moon, H., Kim, H., Yeo, J., Ko, S. H., Highly Stretchable and Transparent Supercapacitor by Ag-Au Core-Shell Nanowire Network with High Electrochemical Stability. ACS Appl. Mater. Inter. 2016, 8 (24), 15449-15458.
    123. Lee, K., Lee, H., Shin, Y., Yoon, Y., Kim, D., Lee, H., Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. Nano Energy 2016, 26, 746-754.
    124. Li, N., Zhi, C., Zhang, H., High-performance Transparent and Flexible Asymmetric Supercapacitor based on Graphene-wrapped Amorphous FeOOH Nanowire and Co(OH)2 Nanosheet Transparent Films Produced at air-water interface. Electrochim. Acta 2016, 220, 618-627.
    125. Liu, Y.-H., Xu, J.-L., Shen, S., Cai, X.-L., Chen, L.-S., Wang, S.-D., High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. J. Mater. Chem. A 2017, 5 (19), 9032-9041.
    126. Chen, P., Chen, H., Qiu, J., Zhou, C., Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3 (8), 594-603.
    127. Wang, X., Gao, K., Shao, Z., Peng, X., Wu, X., Wang, F., Layer-by-Layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. J. Power Sources 2014, 249, 148-155.
    128. Li, N., Huang, X., Li, R., Chen, Y., Li, Y., Shi, Z., Zhang, H., Pseudocapacitive Transparent/Flexible Supercapacitor based on Graphene wrapped Ni(OH)2 Nanosheet Transparent Film Produced using Scalable Bio-inspired Methods. Electrochim. Acta 2016, 219, 61-69.
    129. Gong, S., Zhao, Y., Shi, Q., Wang, Y., Yap, L. W., Cheng, W., Self-assembled Ultrathin Gold Nanowires as Highly Transparent, Conductive and Stretchable Supercapacitor. Electroanal. 2016, 28 (6), 1298-1304.
    130. Jo, K., Lee, S., Kim, S.-M., In, J. B., Lee, S.-M., Kim, J.-H., Lee, H.-J., Kim, K.-S., Stacked Bilayer Graphene and Redox-Active Interlayer for Transparent and Flexible High-Performance Supercapacitors. Chem. Mater. 2015, 27 (10), 3621-3627.
    131. Huang, X., Zhang, H., Li, N., Symmetric transparent and flexible supercapacitor based on bio-inspired graphene-wrapped Fe2O3 nanowire networks. Nanotechnology 2017, 28 (7), 075402.
    132. Ge, J., Cheng, G., Chen, L., Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale 2011, 3 (8), 3084-3088.
    133. Kanninen, P., Luong, N. D., Sinh le, H., Anoshkin, I. V., Tsapenko, A., Seppala, J., Nasibulin, A. G., Kallio, T., Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology 2016, 27 (23), 235403.
    134. Yuksel, R., Sarioba, Z., Cirpan, A., Hiralal, P., Unalan, H. E., Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. ACS Appl. Mater. Inter. 2014, 6 (17), 15434-15439.
    135. Li, N., Huang, X., Zhang, H., Li, Y., Wang, C., Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors. ACS Appl. Mater. Inter. 2017, 9 (11), 9763-9771.
    136. Liu, X., Wang, J., Yang, G., Transparent, flexible, and high-performance supercapacitor based on ultrafine nickel cobaltite nanospheres. Appl. Phys. A 2017, 123 (7).

    無法下載圖示 校內:2022-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE