| 研究生: |
張雲傑 Chang, Yun-Jie |
|---|---|
| 論文名稱: |
以PS微球製備巨孔LSM/YSB複合陰極之研究 Fabrication of Macroporous LSM/YSB Composite Cathode Derived from PS Microspheres |
| 指導教授: |
方冠榮
Fung, Kuan-Zong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | PS微球 、三維規則巨孔結構 、鑭鍶錳氧化物 、氧化鉍 、中溫固態氧化物燃料電池 |
| 外文關鍵詞: | PS microspheres, 3DOM, LSM, bismuth oxide, IT-SOFC |
| 相關次數: | 點閱:126 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)與其他發電技術相比,有低汙染、無噪音、維護簡單、長期供電穩定等優點,然而中溫燃料電池(Intermediate Temperature Solid Oxide Fuel Cell, IT-SOFC)在600-800 oC範圍操作時,效率會因極化阻抗的增加而降低,其中以陰極所造成的極化阻抗最為顯著,而具有規則性的孔洞有助於氣體傳送及提升其反應速率,以降低陰極界面極化阻抗來達到效率的提升。
傳統燃料電池透過粉末與漿料製備出的陰極結構,其孔隙率約為30-60%,且比表面積通常低於10 m2/g,故本研究透過改善微結構的方式來達到孔隙率與比表面積的提升,利用無乳化劑乳化聚合法,製備不同粒徑之單分散聚苯乙烯(PS)球,並將PS微球做規則排列形成模板,利用浸漬法與高溫煅燒的方式,製備氣孔連通的高比表面積之三維規則巨孔(3-dimensionally ordered macroporous,3DOM)結構,並選用高電子導性LSM與高離子導性YSB為其複合材料。
本研究結果分為兩部分,第一部分為規則排列PS模板的製備,首先以無乳化劑乳化聚合法,製備粒徑分佈集中的聚苯乙烯微球,經由SEM觀察與粒徑分析,成功製備出粒徑250-900 nm的次微米級PS微球。接著將不同粒徑的PS微球,經重力沉積乾燥後,成功製備出規則排列的PS微球模板。
第二部分為LSM/YSB複合粉末的製備,結果顯示,利用各別螯合的LSM與YSB溶膠做混合,經過加熱乾燥後,形成凝膠,再經過煅燒500-1000 oC,成功獲得LSM/YSB雙相結構,證明LSM與YSB在此溫度區間為相穩定,雙相不會互相反應。
經由PS球的DTA/TG分析結果,在500 oC達100%的熱重損失,即經過熱處理500 oC以上可完全移除PS球模板,因此本研究透過浸漬法與熱處理的方式來製備LSM/YSB複合巨孔材料,由SEM的觀察,成功製備出三維規則巨孔結構,其孔隙率約為72-77%,比表面積約為5-24 m2/g,綜合以上結果,顯示無論在微結構、孔隙率與比表面積等性質上,皆比傳統陰極材料還要優越,預期將來可以應用在中溫燃料電池上。
The intermediate temperature solid oxide fuel cells (IT-SOFC) have many advantages such as, high efficiency, no low pollution, no noise, etc among several advanced energy technologies. However, the performance of IT-SOFC is highly dependent on the polarization resistance of cathode. In the structure of SOFC, ordered porous structure will enhance the transport of gas and then facilitate the electrochemical reaction to improve the resistance of cathode.
In this study, polystyrene (PS) microspheres have been used as templates to obtain desired 3-dimensionally ordered macroporous (3DOM) structure which has the high porosity and high surface area. In order to obtain various diameters of PS microspheres, the PS microsphere were prepared by emulsion-free polymerization method. The monodisperse PS microsphereswith diameters of 250-900 nm werepreparedsuccessfully.According to the analysis of TG/DTA, The loss of weight reached 100% at 500 oC. In other words, the PS templates wereentirely removed after heat treatment at 500 oC.
In order to obtain 3DOM structure, the precursors of La0.8Sr0.2MnO3 (LSM) and Bi1.5Y0.5O3 (YSB) immersed into interstices between ordered microspheres. According to the XRD pattern, the LSM and YSB phases coexist in the structure without impurity phase. The SEM image showed the 3DOM structure, and the porosity was about 72-77%. The BET-specific surface area tends to increase with decrease of pore size (5 - 24 m2/g).
1. J. M. Serra, S. Uhlenbruck, W. A. Meulenberg, H. P. Buchkremer, and D. Stöver , (2006) “Nano-structuring of solid oxide fuel cells cathodes”, Oxide Fuel Cells Cathodes. Topics in Catalysis, 40: 123-131.
2. J. Schoonman, J. P. Dekker, J. W. Broers, and N. J. Kiwiet, (1991) ”Electrochemical vapor deposition of stabilized zirconia and interconnection materials for solid oxide fuel cells”, Solid StateIonics, 46: 299-308.
3. V. E. J. van Dieten and J. Schoonman, (1992) “Thin film techniques for solid oxide fuel cells”, Solid State Ionics, 57: 141-145.
4. C. C. Chen, M. M. Nasrallah, and H. U. Anderson, (1994) “Synthesis and characterization of YSZ thin film electrolytes”, Solid State Ionics, 101: 70-71.
5. T. Hibino, A. Hashimoto, K. Asano, M. Yano, M. Suzuki, and M. Sano, (2002)”An Intermediate-Temperature Solid Oxide Fuel Cell Providing Higher Performance with Hydrocarbons than with Hydrogen”, Electrochem. Solid-State Lett. 5: A242-A244.
6. Z. Shao and S. M. Haile, (2004) “A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, 431: 170-173.
7. F. H. van Heuveln and H.J.M. Bouwmeester, (1997) ”Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia II. Electrode Kinetics”,J. Electrochem Soc., 144: 134-140.
8. B. C. H. Steele, (2000) “Materials for IT-SOFC stacks: 35 years R&D: the inevitability of gradualness?”, Solid State Ionics, 134: 3-20.
9. S. P. Jiang, (2003)”Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells”, J. Power Sources, 124: 390-402.
10. Holland B T, Blanford C F, Stein A. (1998) “Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids”, Science, 281: 538-540.
11. Wang-jun Cui, Hai-jing Liu, Cong-xiao Wang, Yong-yao Xia (2008) “Highly Ordered Three-Dimensional Macroporous FePO4 as Cathode Materials for Lithium-Ion Batteries”, Electrochemistry Communications, 10: 1587-1589.
12. Velev O D, Lenhoff A M. (2000) “Colloidal Crystals as Templates for Porous Materials”, Current Opinion in Colloid&Interface Science, 5: 56-63.
13. Dino Tonti, Marı´a Jose´ Torralvo, Eduardo Enciso, Isabel Sobrados, and Jesus Sanz(2008) “Three-Dimensionally Ordered Macroporous Lithium Manganese Oxide for Rechargeable Lithium Batteries”,Chemistry of Materials, 20: 4783-4790.
14. Kei Nishikawa, Kaoru Dokko, Koji Kinoshita, Sang-Wook Woo, Kiyoshi Kanamura, (2009) ”Three-Dimensionally Ordered Macroporous Ni-Sn Anode for Lithium Batteries“, Journal of Power Sources, 189: 726-729.
15. A.K. vam der Vegt & L.E. Govaert, Polymeren, van keten tot kunstof, ISBN 90-407-2388-5
16. 李宏宇(2005)”單分散聚合物乳粒合成機膠體晶體組裝和結構研究[D]”. 北京:北京化工大學,: 18-26.
17. 馬光輝、蘇志國(2005)”高分子微球材料”,化學工業出版社
18. 朱世雄、杜金環、金熹高、陳柳生(1998)“無乳化劑乳液聚合法合成單分散大粒徑高分子微球的研究”,高分子學報,1卷,1期,1月。
19. J.L.Guillaume, C. Pichot, J. Guillot, (1998) “Emulsifier-Free Emulsion Copolymerization of Styrene and Butyl Acrylate. II. Kinetic Studies in the Presence of Ionogenic Comonomers”, Jounal of Polymer Science:Part A: Polymer Chemistry” 26:1937-1959
20. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "ionic strength, I”, IUPAC.
21. Goodwin J W, Hearn J, Ho CC.(1974)"Stuies on the preparation and characterisation of monodisperse polystyrene latices", Colloid Polym Sci, 252:464-471.
22. Li Jia, Zhe Lu, Jipeng Miao, Zhiguo Liu, Guoqing Li, Wenhui Su (2006) “Effects of pre-calcined YSZ powders at different temperatures on Ni–YSZ anodes for SOFC”, Journal of Alloys and Compounds, 414:152-157.
23. Younan Xia,* Byron Gates, Yadong Yin, and Yu Lu (2000) “Monodispersed Colloidal Spheres: Old Materials with New Applications”, Adv. Mater., 12: 693-713.
24. N.A.Clark, A. J. Hurd, B.J. Ackerson (1979) ” Single colloidal crystals”, Nature, 281: 57-60.
25. F. Meseguer, A. Blanco, H. Miguez, (2002) “Synthesis of inverse opals”, Colloids and Surf. A: Physicochem. Eng. Aspects, 202: 281-290.
26. H.Miguez, F. Meseguer, C. Lopez, (1998)” Control of the Photonic Crystal Properties of fcc-Packed Submicrometer SiO2 Spheres by Sintering”, adv. Mater., 10: 480-483.
27. Andreas Stein, Fan Li, and Nicholas R. Denny, (2008) “Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles”, Chem. Mater., 20: 649-666.
28. R. Magoral, J. Requena, J. S. Moya, (1997) “3D Long-Range Ordering in an SiO2 Submicrometer-Sphere Sintered Superstructure”adv. Mater., 9: 257-260.
29. 駱榮富,逢甲大學(2005)”單分散微球之電泳自組裝技術製作三為反蛋白石結構光子晶體”,國科會報告NSC94-2216-E-035-021.
30. Naiqing Zhang, Juan Li, Wei Li, Dan Ni and Kening Su, (2012 )“High performance three-dimensionally ordered macroporous composite cathodes for intermediate temperature solid oxide fuel cells“, RSC Adv., 2: 802-804.
31. N.Q.Minh.,(1993) “Ceramic fuel cell”, J. Am. Ceram. Soc., 76: 568-588.
32. R. E. W. Casselton, (1974) “Blackening in yttria stabilized zirconia duo to cathodic processes at solid platinum-electrodes”, J. Appk. Electrochem., 4: 25-48.
33. T. H. Etsell and S. N. Flengas, (1970) “Electrical properties of solid oxide electrolytes”, Chem. Rev., 70: 339-376.
34. T. Horita, K. Yamaji, N. Sakai, Y. Xiong, T. Kato, H. Yokokawa, and T. Kawada, (2002) “Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique”. J. Power Source, 106: 224-230.
35. C. Tanner, K. Z. Fung, and A. V. Virka, (1997) “The effect of porous composite electrode structure on solid oxide fuel cell performance I. Theoretical analysis”. J. Electrochem. Soc., 144: 21-30.
36. S. B. Alder, (2000) “Limitations of charge-transfer models for mixed-conducting oxygen electrodes”. Solid State Ioincs, 135: 603-612.
37. C. Sun, R. Hui and J. Roller , (2010) “Cathode materials for solid oxide fuel cells: a review”, J. Solid State Electrochem, 14:1125-1144.
38. J. Li, Q. Huang, Z. W. Li, L. P. You, S.Y. Xu and C. K. Ong, (2001)” Enhanced magnetoresistance in Ag-doped granular La2/3Sr1/3MnO3 thin films prepared by dual-beam pulsed-laser deposition” J.Appl. Physi., 89: 7428-7430.
39. A. Chakraborty, P. S. Devi and H. S. Maiti, (1994) “PREPARATION OF La1-XSrXMnO3(0-LESS-THAN-OR-EQUAL-TO-X-LESS-THAN-OR- EQUAL-TO-0.6) POWDER BY AUTOIGNITION OF CARBOXYLATE -NITRATE GELS”Mater. Lett. 20: 63-69.
40. K. Wiik, C. R. Schmidt, S. Faaland, S. Shamsili, M. A. Einarsrud, and T. Grande, (1999) “Reactions between Strontium-Substituted Lanthanum Manganite and Yttria-Stabilized Zirconia: I, Powder Samples” J. Am. Ceram. Soc., 82: 721-728.
41. A. M. Azad, S. Larose, S. A. Akbar, (1994) “Bismuth oxide-based solid electrolytes for fuel-cells”, J. Mater. Sci., 29: 4135-4151.
42. P. Shuk, H. D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, (1996) “Oxide ion conducting solid electrolytes based on Bi2O3”, Solid State Ionics, 89:179-196.
43. A. Laarif and F. Theobald, (1986) “The lone pair concept and the conductivity of bismuth oxides Bi2O3”, Solid State Ionics, 21: 183-193.
44. H. A. Harwig and A. G. Gerards, (1978) “Electrical-properties of alpha, beta, gamma and delta phases of bismuth sesquioxide”, J. Solid State Chem., 26: 265-274.
45. T. Takahashi, H. Iwahara and Y. Nagai, (1972) “High oxide ion conduction in sintered Bi2O3 containing SrO, CaO or La2O3”, J. Appl. Electrochem., 2: 97-104.
46. J. C. Boivin and G. Mairesse, (1998) “Recent material developments in fast oxide ion conductors”, Chem. Mater., 10: 2870-2888.
47. R. K. Datta and J. P. Meehan, (1971) “System Bi2O3-R2O3 (R=Y, Gd)”, Z. Anorg. Allg. Chem., 383, 328-337.
48. L. G. Sillen, (1937) “X-ray studies of bismuth trioxide”, Arkiv för Kemi, Mineralogi och Geologi, 12A, 1-15.
49. G. Gattow and H. Schroder, (1962) “Bismuth oxide. III. The crystal structure of the high temperature modification of bismuth (III) oxide (-Bi2O3)”, Z. Anorg. Allg. Chem., 318: 176-189.
50. H. Kruidhof, K. J. Devries and A. J. Burggraaf, (1990) “Thermochemical stability and nonstoichiometry of yttria-stabilized bismuth oxide solid-solutions”, Solid State Ionics, 37: 213-215,.
51. T. Takahashi and H. Iwahara, (1978) “Oxide ion conductors based on bismuth sesquioxide”, Mater. Res. Bull., 13: 1447-1453.
52. Liuer Wu, Zhiyi Jiang, Shaorong Wang, Changrong Xia (2013)
“(La,Sr)MnO3-(Y,Bi)2O3 composite cathodes for intermediate-temperature solid oxide fuel cells”, International Journal of Hydrogen Energy, 38: 2398-2406.
53. Z Jiang, L Zhang, K Feng, C Xia, (2008)”Nanoscale bismuth oxide impregnated (La,Sr)MnO3 cathodes for intermediate-temperature solid oxide fuel cells”, Journal of Power Sources, 185:40-48.
54. Z Jiang, L Zhang, L Cai, C Xia, (2009)” Bismuth oxide-coated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells with yttria-stabilized zirconia electrolytes” Electrochimica Acta, 54: 3059-3065.
55. Z Jiang, Z Lei, B Ding, C Xia, F Zhao, F Chen,(2010) “Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones”, International Journal of Hydrogen Energy, 35: 8322-8330.
56. D Panuh, A Muchtar, N Muhamad, EH Majlan,(2014) “Fabrication of thin Ag–YSB composite cathode film for intermediate-temperature solid oxide fuel cells”, Composites: Part B 58:193-198.