| 研究生: |
陳宗遠 Chen, Tsung-Yuan |
|---|---|
| 論文名稱: |
伺服氣壓微創手術操作器設計與控制之研究 A Study of Design and Control on Pneumatic Servo Minimally Invasive Surgery Manipulator |
| 指導教授: |
施明璋
Shih, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 手術機器人 、微創手術操作器 、伺服氣壓控制 、自調式控制 、模糊控制 |
| 外文關鍵詞: | Surgical Robot, Minimally Invasive Surgery Manipulator, Servo Pneumatic Control, Self-tuning Control, Fuzzy Control |
| 相關次數: | 點閱:92 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,在自動輔助微創手系統被開發了出來,並且已有實際應用的例子,例如達文西系統與華盛頓大學的渡鴉系列Raven的手術機器人,都是很成功的實際案例,由於氣壓系統的動力源可調與乾淨、長行程以及非導磁的特性,使氣壓系統更適合用於多變化的醫療輔助系統內。本文開發出用伺服氣壓系統驅動的微創手術用操作器,並用三個氣壓缸來驅動鋼繩與兩個自由度的旋轉機構與器械前端機構,器械前端機構設計成可替換式的結構,使操作器不僅僅是單一功能,為了避免驅動時鋼繩互相干擾作動本文參考Endowrist設計閃線機構,本文參考文獻中所提及的自調式模糊控制器配合閥軸與系統的死區補償,來做操作器的定位控制實驗,並討論其實驗結果。運用設計的控制器能夠使本文的操作器在第一軸60度、90度、120度控制目標下的穩態控制誤差皆為-0.0001mm,計算角度誤差分別為-3.00度、-4.5度以及-6.00度的誤差之下。在第二軸上分別為0.0023mm、0.0013mm、0.0018mm,計算角度穩態誤差分別為2.96度、4.48度、5.97度。以上的控制誤差皆符合醫療系統上的需求。
In recent years, the automatic assistance system in the Minimally Invasive Surgery (MIS) have been developed and applied in the practical case; e.g. DaVinci Surgical System and the Washington University Raven Surgical Robot. The pneumatic system have the characteristics of the variable, clear power source, long stroke and nonmagnetic. Let the system is suitable to use in the medical assistance system. In this study, a surgical manipulator is developed. It be composed by three pneumatic cylinders and the mechanism. These cylinders are utilized to put the wire to drive the 2DOF rotational mechanism and the front mechanism. The front mechanism is designed to replace the tip structure, so that the manipulator has multifunction .To avoid the obstruction of the wires with each other, the Endowrist manipulator is referred. And in the controller design, the self-tuning fuzzy controller with deadzone compensator is taken by reference to control the manipulator be designed in the study. At the last will show the control result and discuss it. The manipulator controlled by the controller that the axis-1 state steady error be controlled under -0.0001 mm and the calculated error of degree are -3 deg, -4.5 deg and -6 deg. At the axis-2 the controlled error are 0.0023 mm , 0.0013 mm and 0.0018 mm .The calculated error of degree are 2.96 deg, 4.48 deg and 5.97 deg. These experiment result are all suitable the error requirement of the medical system.
[1] J. E. Wickham, "The new surgery," British medical journal, vol. 295, pp. 1581-1582,1987.
[2] "Microline Surgical Instruments," www.microlinesurgical.com/
[3] R. Nemitz, Surgical Instrumetation: Saunders Elsevies, 2010.
[4] "Laparoscopic Instrument Detail, "www.laparoscopyhospital.com/
[5] J. S. Oh, Y. M. Han, S. R. Lee and S. B. Choi, "A 4-DOF haptic master using ER fluid for minimally invasive surgery system application," Smart Materials and Structures, vol. 22, pp. 045004, 2013.
[6] H. Yamashita, K. Daeyoung, N. Hata, and T. Dohi, "Multi-slider linkage mechanism for endoscopic forceps manipulator," Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference ,vol. 3, pp. 2577-2582, 2003.
[7] S. E. Manzo and J. Krom, "Robotic tool with wristed monopolar electrosu -rgical end effectors," US Patent 7824401 B2, 2010.
[8] K. Tadano and K. Kawashima, "Development of a pneumatically driven forceps manipulator IBIS IV," in ICCAS-SICE, pp. 3815-3818, 2009.
[9] G. J. Ho, K. R. Pai, and M. C. Shih, ”A Study of Bi-axial Pneumatic Manipulator Position Control,” Proceeding of the 19th National Conference on Mechanical Engineering, CSME, Taiwan, pp. 427-434, 2002.
[10] M. H. Tsai, T. Y. Hsu, K. R. Pai, and M. C. Shih, "Precision Position Control of Pneumatic Servo Table Embedded with Aerostatic Bearing," Journal of System Design and Dynamics, vol. 2, pp. 940-949, 2008.
[11] H. I. Chen and M .C. Shih,"Visual Control of an Automatic Manipulation System by Microscope and Pneumatic Actuator," Automation Science and Engineering, IEEE Transactions on, vol. 10, pp. 215-218, 2013.
[12] H. Martin and D. McCloy, Control of Fluid Power, 2ed: Ellis Horwood 1980.
[13] R. C. Gonzalez , K .S. Fu, C. S. G. Lee, Robotics Control Sensing Vision and Intelligence: McGraw-Hill, 1987.
[14] J. Denavit and R. S. Hartenberg, "A kinematic notation for lower-pair mechanisms based on matrices," Trans. ASME E, Journal of Applied Mechanics, vol. 22, pp. 215-221, 1955.
[15] A. C. Valdiero, P. L. Andrighetto and D. Bavaresco, "Dead Zone Compensation In Pneumatic Servo Systems," ABCM Symposium Series in Mechatronics, vol. 3, pp. 501-509, 2008.
[16] G. Reethof, J. F. Blackburn and J. L. Shearer, Fluid Power Control. M.I.T Press, 1960.
[17] L. A. Zadeh ,"Fuzzy sets, " Information and Control, vol. 8, pp. 338-353, 1965.
[18] H. E. Merrit, Hydraulic Control System: John Willey & Sons Inc, 1967.
[19] J. Kenneth, S. Matthew, T. Mason, Jr., Robot hands and the mechanics of manipulation MIT Press, 1985.
[20] L. F. Schrader and Z. J. Lansky, Jr., Industrial pneumatic control: CRC Press, 1986.
[21] R. J. Schilling, Fundamentals of Robotics: Prentice-Hall 1990.
[22] H. Hellendoorn, D. Driankov, and M. Teinfrank., An Introduction to Fuzzy control: Springer-Verlag Berlin Heidelberg, 1993.
[23] H. A. Rothbart, Mechanical design handbook: McGraw-Hill, 1996.
[24] E. Richer and Y. Hurmuzlu, "A High Performance Pneumatic Force Actuator System: Part I—Nonlinear Mathematical Model," Journal of Dynamic Systems, Measurement, and Control, vol. 122, pp. 416-425, 1999.
[25] 雷永耀、沈金翰、吳秋文、彭芳谷, 腹腔鏡外科學: 九州圖書文物股份有限公司, 1998.
[26] 李協興編譯, 手術室器械圖鑑: 合計圖書出版社, 2001.
[27] 闕士傑, 彩色圖解食用泌尿科腹腔鏡手術指引: 藝軒圖書出版社, 2005.
[28] M. A. Carlson and C. T. Frantizides, Atlas of Minimally Invasive Surgery: Saunders Elsevier, 2009.