| 研究生: |
陳俊吉 Chen, Chun-Chi |
|---|---|
| 論文名稱: |
金屬氧化物半導體在可見光分解水製氫之研究 Metal-oxide Semiconductors Designed for Water-splitting to Generate H2 Under Visible Light Illumination |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 水分解 、可見光 、鈦酸鍶 、氧化亞銅 、半導體 |
| 外文關鍵詞: | visible light, SrTiO3, Cu2O, semiconductors, water splitting |
| 相關次數: | 點閱:113 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化亞銅的能隙值為2.6eV,被認為是具潛力做為太陽能轉換的觸媒。本研究以電化學沈積的方式在三極式系統製備氧化亞銅薄膜。利用電化學儀器分析氧化亞銅的半導體行為,以XRD了解其成長特性,以SEM觀察其表面結構,以UV/VIS吸收光譜分析能隙。有學者認為氧化亞銅的價帶位置太接近水的氧化電位,因此照光時無法產生足夠的過電壓驅使水的氧化反應的進行。所以,我們以p型半導體氧化亞銅與n型半導體氧化鎢搭配組成Z-scheme機制,進行光分解水的反應,並藉由p-n cell的光電化學行為來進行模擬懸浮式光觸媒反應系統。
另一部分的研究重點則著眼於觸媒的奈米化,將已為人熟知的鈦酸鍶觸媒利用水熱合成的方式,嘗試製成奈米級顆粒。觸媒與溶液的接觸界面,是水發生氧化還原反應的地方。觸媒在照光後吸收光子而受光激發生成電子電洞對,電子與電洞分別傳遞到觸媒表面的活性位置,與水反應。與傳統的固相法製備的低表面積觸媒相比較,水熱法合成的觸媒可以提供較大的比表面積,而提供電子電洞對較多的氫氣與氧氣活性座進行反應,光分解水的效率應該可以提升許多。再者,小的結晶粒徑使得電子電洞對傳遞的路徑縮短,減低了電子電洞對再結合的機率。由實驗結果發現,經由懸浮於甲醇水溶液中,不論在紫外光或可見光照射測試分解水的效果,水熱合成的觸媒其光反應活性確實優於固相法合成的觸媒。
Cu2O with a band gap of 2.6eV is a candidate for solar energy conversion. In this study, Cu2O films were prepared from electrochemical deposition accomplished in a three-electrode system. The bulk properties were analyzed by XRD, SEM, BET, and UV/VIS spectrometer. The deposited Cu2O films were subjected to photoelectrochemical analysis with a three-electrode setup, using a CHI 614B potentiostat. Some previous studies suggest that there is almost no overpotential available for water oxidation on illuminated Cu2O because the valance band edge of Cu2O is close to the oxidation potential of water. The p-type Cu2O powder was suspended in an aqueous solution in combination with the n –type WO3 to proceed with a so-called Z-scheme water splitting mechanism. The p/n particle suspension reaction was simulated by a p/n photoelectrolysis cell.
Another part of this research focused on the nanocrystalline SrTiO3 particles prepared by hydrothermal technique. The solid-liquid interface provides sites for redox reactions. The mobility of electron-hole pairs affects the photocatalytic activity because it affects the probability of electrons and holes reaching reaction sites on the surface. Catalysts prepared by hydrothermal technique have high surface area in comparing with those prepared by solid state method. Thus, they have the ability to introduce more active sites for O2 and H2 evolution. Furthermore, the decreasing of crystalline size implies the reducing of the probability of electron-hole recombinations. In the present study, the H2 evolution was conducted with 10vol% methanol solution over SrTiO3 under visible light irradiation. The photocatalytic activity of catalysts prepared by hydrothermal technique was higher than those prepared by solid state method.
1. 張立群譯,光清淨革命-活躍的二氧化鈦光觸媒,協志工業叢書印行,台北(2000).
2. 藤嶋 昭,本多健一,菊池真一,工業化學 72 (1969) 108.
3. A. Fujishima, K. Honda, Nature 238 (1972) 37.
4. http://www.d7.dion.ne.jp/~shinri
5. http://www.tidynet.com.cn/company/news.asp?ALId=386
6. M. Gratzel, Nature 414 (2001) 338.
7. A. Kudo, Cataly. Surveys from Asia, 7 (2003) 31.
8. A. Kudo, H. Kato, and I. Tsuji, Chem. Lett. 33 (2004) 1534.
9. I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, J. Am. Chem. Soc., 126 (2004) 13406
10. H. S. Potdar, N. Pavaskar, A. Mitra, and A. P. B. Sinha, Sol. Energy Mater. 4 (1981) 291.
11. A. Roos, T. Chibuye, and B. Karlson, Sol. Energy Mater. 7 (1983) 453.
12. A. E. Rakhshani, Solid State Electron. 29 (1986) 7.
13. A. E. Rakhshani, and J. Varghese, Phys. Stat. Sol. 101 (1987) 479.
14. S. Ikeda, T. Takata, T. Kondo, G. Hitoki, M. Hara, J. N. Kondo, K. Domen, H. Hosono, H. Kawazoe, and A. Tanaka, J. Chem. Soc. Chem. Commun. (1998) 2185.
15. M . Hara, M. Komoda, H. Hasei, M. Yashima, S. Ikeda, T. Takata, J. N. Kondo, and K. Domen, J. Phys. Chem. B 104 (2000) 780.
16. V. Georgieva, and M. Ristov, Sol. Energy Mater. Sol. Cells 73 (2002) 67.
17. A. Laik, P. Poizot, and J. Tarascon, J. Electrochem. Soc. 149 (2000) A251.
18. W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. Baeck, and E. W. McFarland, Sol. Energy Mater. Sol. Cells 77 (2003) 229.
19. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, and K. Domen, Chem. Commun. 3 (1998) 357.
20. P. E. De Jongh, D. Vanmaekelbergh, and J. J. Kelly, Chem. Commun. 12 (1999) 1069.
21. P. E. De Jongh, D. Vanmaekelbergh, and J. J. Kelly, J. Electrochem. Soc. 147 (2000) 486.
22. K. Tennakone, R. Tantrigoda, S. Abeysinghe, S. Punchihewa, and C. A. N. Fernando, J. Photochem. Photobiol. A 52 (1990) 43.
23. K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe, and H. Arakawa, Chem. Phys. Lett. 277 (1997) 387.
24. H. Kato, M. Hori, R. Konda, Y. Shimodaira, and A. Kudo, Chem. Lett. 33 (2004) 1348.
25. R. Abe, K. Sayama, K. Demen, and H. Arakawa, Chem. Phys. Lett. 344 (2001) 339.
26. K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, Chem. Commun. 23 (2001) 2416.
27. K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, J. Photochem. Photobiol. A 148 (2002) 71.
28. R. Abe, K. Sayama, K. Demen, and H. Arakawa, Chem. Phys. Lett. 362 (2002) 441-444
29. T. D. Golden, M. G. Shumsky, Y. Zhou, R. A. Vanderwerf, R. A. Van Leeuwen, and J. A. Switzer, Chem. Mater., 8 (1996) 2499.
30. R. Konda, T. Ishii, H. Kato, and A. Kudo, J. Phys. Chem. B 108 (2004) 8992.
31. T. Ishii, H. Kato, and A. Kudo, J. Photochem. Photobiol.A 163 (2004) 181.
32. H. Kato, and A. Kudo, J. Phys. Chem. B 106 (2002) 5029.
33. A. Kudo, A. Tanaka, K. Domen, and T. Onishi, J. Catal., 111 (1988) 296.
34. K. Domen, A. Kudo, and T. Onishi, J. Catal., 102 (1986) 92.
35. K. Domen, A. Kudo, and T. Onishi, J. Phys. Chem., 90 (1986) 292.
36. B. Chang, G. Campet, J. Claverie, and P. Hagenmuller, Bull. Chem. Soc. Jpn., 57 (1984) 2574.
37. M. Matsumura, M. Hiramoto, and H. Tsubomura, J. Electrochem. Soc., (1983) 326.
38. Q. Li, K. Domen, S. Naito, T. Onishi, and K. Tamaru, Chem. Lett., (1983) 321.
39. K. Domen, S. Nalto, T. Onishi, and K. Tamaru, J. Phys. Chem., 86 (1982) 3657.
40. A. Mackor, and G. Blasse, Chem. Phys. Lett., 77 (1981) 6.
41. R.U.E. ’t Lam, L.G.J. de Haart, A.W. Wiersma, G. Blasse, A.H.A. Tinnemans, and A. Mackor, Mat. Res. Bull., vol.16, 1981, 1593-1600
42. J. Lehn, J. Sauvage, and R. Ziessel, Nouv. J. Chim., 4 (1980) 623.
43. G. Campet, M.P. Dare-Edwards, A. Hamnett, and J. B. Goodenough, Nouv. J. Chim. 4 (1980) 501.
44. K. Domen, S. Naito, M. Soma, T. Onishi, K. Tamaru, J.C.S. Chem. Comm., (1980) 543
45. K. Domen, S. Naito, M. Soma, T. Onishi, and K. Tamary, Appl. Phys. Lett., 28 (1976) 241.
46. S. Burnside, J. Moser, K. Brooks, M. Gratzel, and D. Cahen, J. Phys. Chem. B 103 (1999) 9328
47. 林孟萱,Ag-SrTiO3奈米核-殼結構粒子之研究與製備,中原大學化學系碩士學位論文,(2003).
48. 張家豪,以有機前導物法製備SrTiO3粉末及其光催化性質之研究,成功大學資訊工程研究所碩士論文,(2004).
49. A. E. Rakhshani and J. Varghese, Sol. Energy Mater. 15 (1987) 237.
50. M. Ristov, G. J. Sinadinovski and M. Mitreski, Thin Solid Films, 167 (1988) 309-316.
51. P. E. De Jongh, D. Vanmaekelbergh, and J. J. Kelly, Chem. Mater., 11 (1999) 3512-3517.
52. J. A. Switzer, H. M. Kothari, and E. W. Bohannan, J. Phys. Chem. B., 106 (2002) 4027-4031.
53. P. Poizot, C. J. Hung, M. P. Nikiforov, E. W, Bohannan, and J. A. Switzer, Electrochem. Solid-State Lett. 6 (2003) C21-C25.
54. R. Liu, E. W. Bohannan, and J. A. Switzer, Appl. Phys. Letter, 83 (2003) 1944-1946.
55. Z. Wang, X. Chen, J. Liu, M. Mo, L. Yang, and Y. Qian, Solid State Commun., 130 (2004) 585-589.
56. Y. Zhou, and J. A. Switzer, Scripta Materialia, 38 (1998) 1731.
57. E. W. Bohannan, M. G. Shumsky, and J. A. Switzer, Chem. Mater., 11 (1999) 2289.
58. J. K. Barton, A. A. Vertegel, E. W. Bohannan, and J. A. Switzer, Chem. Mater., 13 (2001) 952.
59. R. Liu, F. Oba, E. W. Bohannan, F. Ernst, and J. A. Switzer , Chem. Mater., 15 (2003) 4882.
60. F. Oba, F. Ernst, Y. Yu, R. Liu, H. M. Kothari, and J. A. Switzer, J. Am. Ceram. Soc., 88 (2005) 253.
61. F. Oba, F. Ernst, Y. Yu, R. Liu, H. M. Kothari, and J. A. Switzer, Chem. Mater., 17 (2005) 725.
62. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction (3rd edition), Prentice Hall (2001)
63. S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc., 60 (1938) 390.
64. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis, Saunders College Publishing, 1998
65. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; NACE, Houston, TX, 1974.
66. 荒川裕則,水分解光觸媒技術之最新動向,株式会社シーエムシー出版,日本(2003)
67. D. W. Hwang, J. Km, T. J. Park, and J. S. Lee, Catal. Lett., 80, 2002, 53-57
68. M. A. Butler, and D. S. Ginley, J. Electrochem. Soc. 125 (1978) 228
69. Y. Matsumoto, J. Sol. State Chem. 126 (1996) 227
70. T. Higuchi, T. Tsukamoto, N. Sata, M. Ishigame, Y. Tezuka, and S. Shin, Phys. Rev. B 57 (1998) 6978.
71. W. Luo, Wi. Duan, S. G. Louie, and M. L. Cohen, Phys. Rev. B 70 (2004) 214109
72. M. Cardona, Phys. Rev. A 651 (1965) 140.