簡易檢索 / 詳目顯示

研究生: 陳俊吉
Chen, Chun-Chi
論文名稱: 金屬氧化物半導體在可見光分解水製氫之研究
Metal-oxide Semiconductors Designed for Water-splitting to Generate H2 Under Visible Light Illumination
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 76
中文關鍵詞: 水分解可見光鈦酸鍶氧化亞銅半導體
外文關鍵詞: visible light, SrTiO3, Cu2O, semiconductors, water splitting
相關次數: 點閱:113下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化亞銅的能隙值為2.6eV,被認為是具潛力做為太陽能轉換的觸媒。本研究以電化學沈積的方式在三極式系統製備氧化亞銅薄膜。利用電化學儀器分析氧化亞銅的半導體行為,以XRD了解其成長特性,以SEM觀察其表面結構,以UV/VIS吸收光譜分析能隙。有學者認為氧化亞銅的價帶位置太接近水的氧化電位,因此照光時無法產生足夠的過電壓驅使水的氧化反應的進行。所以,我們以p型半導體氧化亞銅與n型半導體氧化鎢搭配組成Z-scheme機制,進行光分解水的反應,並藉由p-n cell的光電化學行為來進行模擬懸浮式光觸媒反應系統。
    另一部分的研究重點則著眼於觸媒的奈米化,將已為人熟知的鈦酸鍶觸媒利用水熱合成的方式,嘗試製成奈米級顆粒。觸媒與溶液的接觸界面,是水發生氧化還原反應的地方。觸媒在照光後吸收光子而受光激發生成電子電洞對,電子與電洞分別傳遞到觸媒表面的活性位置,與水反應。與傳統的固相法製備的低表面積觸媒相比較,水熱法合成的觸媒可以提供較大的比表面積,而提供電子電洞對較多的氫氣與氧氣活性座進行反應,光分解水的效率應該可以提升許多。再者,小的結晶粒徑使得電子電洞對傳遞的路徑縮短,減低了電子電洞對再結合的機率。由實驗結果發現,經由懸浮於甲醇水溶液中,不論在紫外光或可見光照射測試分解水的效果,水熱合成的觸媒其光反應活性確實優於固相法合成的觸媒。

    Cu2O with a band gap of 2.6eV is a candidate for solar energy conversion. In this study, Cu2O films were prepared from electrochemical deposition accomplished in a three-electrode system. The bulk properties were analyzed by XRD, SEM, BET, and UV/VIS spectrometer. The deposited Cu2O films were subjected to photoelectrochemical analysis with a three-electrode setup, using a CHI 614B potentiostat. Some previous studies suggest that there is almost no overpotential available for water oxidation on illuminated Cu2O because the valance band edge of Cu2O is close to the oxidation potential of water. The p-type Cu2O powder was suspended in an aqueous solution in combination with the n –type WO3 to proceed with a so-called Z-scheme water splitting mechanism. The p/n particle suspension reaction was simulated by a p/n photoelectrolysis cell.
    Another part of this research focused on the nanocrystalline SrTiO3 particles prepared by hydrothermal technique. The solid-liquid interface provides sites for redox reactions. The mobility of electron-hole pairs affects the photocatalytic activity because it affects the probability of electrons and holes reaching reaction sites on the surface. Catalysts prepared by hydrothermal technique have high surface area in comparing with those prepared by solid state method. Thus, they have the ability to introduce more active sites for O2 and H2 evolution. Furthermore, the decreasing of crystalline size implies the reducing of the probability of electron-hole recombinations. In the present study, the H2 evolution was conducted with 10vol% methanol solution over SrTiO3 under visible light irradiation. The photocatalytic activity of catalysts prepared by hydrothermal technique was higher than those prepared by solid state method.

    總目錄 中文摘要………………………………………………………I Abstract………………………………………………………II 致謝……………………………………………………………IV 總目錄…………………………………………………………V 圖目錄…………………………………………………………VIII 表目錄…………………………………………………………XI 第一章 諸論與理論說明……………………………………1 1-1 前言 ……………………………………………………1 1-2 本多-藤嶋效果的發現…………………………………1 1-3 光觸媒原理 ……………………………………………1 1-3-1 光觸媒的催化原理…….…………………….…2 1-3-2 光分解水的催化原理….……………………..…2 1-3-3 犧牲試劑的工作原理………….……………..…3 1-4 可見光應答光觸媒的設計方式…….……..…...……4 1-5 研究動機與主題…..………………...……….………5 1-5-1 氧化亞銅(Cu2O)觸媒…………...………………5 1-5-2 鈦酸鍶(SrTiO3)觸媒………………...………..…6 第二章 實驗部份…………………………..…….……...….17 2-1 藥品與儀器………………………………...…….…17 2-2 光觸媒製備……………………….………………...17 2-2-1 氧化亞銅(Cu2O)觸媒的製備……….…………17 2-2-2 氧化鎢(WO3)電極的製作方式….....….………18 2-2-3 鈦酸鍶(SrTiO3)觸媒的製備………..………..18 2-2-3-1 固相法(Solid state method)………..……...18 2-2-3-2 水熱法(Hydrothermal technique)…………19 2-3 光電化學裝置與分析……..………………..………20 2-4 光觸媒反應裝置與分析……………………..……..21 2-5 分析儀器簡述………………………………..……..21 2-5-1 X光繞射分析(XRD)………….……………….21 2-5-2 可見/紫外光光譜分析…………..….…….……22 2-5-3 觸媒表面形態觀察(SEM) .………...….………22 2-5-4 物理吸附分析(BET)…..……………………….23 2-5-5 氣相層析儀(GC)……………….………………24 第三章 氧化亞銅(Cu2O)觸媒的實驗結果與討論……..…..37 3-1 電鍍結果與分析………………………...………….37 3-1-1 電鍍時間與電流關係…………..…..………….37 3-1-2 觸媒薄膜電極的半導體行為分析..….….…….37 3-2 觸媒結構與性質分析…………………..….……….38 3.2.1 X光繞射圖譜分析………………..……………38 3-2-2 掃瞄式電子顯微鏡表面觀察…….……..……..39 3-2-3 可見/紫外光光譜分析…….…….………...…….39 3-3 光觸媒反應測試……………….……...….…….…..40 3-3-1 氧化亞銅的光觸媒反應….…………....….…….40 3-3-2 氧化亞銅和氧化鎢觸媒組合的光觸媒反應…...40 3-4 p-n cell測試…………………….……..…...……….42 第四章 鈦酸鍶(SrTiO3)觸媒的實驗結果與討論………......53 4-1 摻入Cr離子或Ta離子修飾的鈦酸鍶觸媒………..53 4-2 觸媒結構與性質分析…………………………..…..54 4-2-1 X光繞射圖譜分析………………..…...………54 4-2-2 紫外光/可見光光譜分析………………………55 4-2-3 掃瞄式電子顯微鏡表面觀察(SEM)….….……56 4-2-4 比表面積的研究(BET) …………...…...………57 4-3 光觸媒反應測試……………………………………57 4-4 鈦酸鍶觸媒產氫的機構……………...…….………58 第五章 結論與建議…………………………….….…….…70 5-1 結論………………………………………………....70 5-1-1 氧化亞銅(Cu2O)觸媒的研究……...…….…….70 5-1-2 鈦酸鍶(SrTiO3)觸媒的研究………….…..……70 5-2 建議………………………………….……...………71 參考文獻……………………………………...…...…….……72 自述…………………………………...……...…...……..……76

    1. 張立群譯,光清淨革命-活躍的二氧化鈦光觸媒,協志工業叢書印行,台北(2000).
    2. 藤嶋 昭,本多健一,菊池真一,工業化學 72 (1969) 108.
    3. A. Fujishima, K. Honda, Nature 238 (1972) 37.
    4. http://www.d7.dion.ne.jp/~shinri
    5. http://www.tidynet.com.cn/company/news.asp?ALId=386
    6. M. Gratzel, Nature 414 (2001) 338.
    7. A. Kudo, Cataly. Surveys from Asia, 7 (2003) 31.
    8. A. Kudo, H. Kato, and I. Tsuji, Chem. Lett. 33 (2004) 1534.
    9. I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, J. Am. Chem. Soc., 126 (2004) 13406
    10. H. S. Potdar, N. Pavaskar, A. Mitra, and A. P. B. Sinha, Sol. Energy Mater. 4 (1981) 291.
    11. A. Roos, T. Chibuye, and B. Karlson, Sol. Energy Mater. 7 (1983) 453.
    12. A. E. Rakhshani, Solid State Electron. 29 (1986) 7.
    13. A. E. Rakhshani, and J. Varghese, Phys. Stat. Sol. 101 (1987) 479.
    14. S. Ikeda, T. Takata, T. Kondo, G. Hitoki, M. Hara, J. N. Kondo, K. Domen, H. Hosono, H. Kawazoe, and A. Tanaka, J. Chem. Soc. Chem. Commun. (1998) 2185.
    15. M . Hara, M. Komoda, H. Hasei, M. Yashima, S. Ikeda, T. Takata, J. N. Kondo, and K. Domen, J. Phys. Chem. B 104 (2000) 780.
    16. V. Georgieva, and M. Ristov, Sol. Energy Mater. Sol. Cells 73 (2002) 67.
    17. A. Laik, P. Poizot, and J. Tarascon, J. Electrochem. Soc. 149 (2000) A251.
    18. W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. Baeck, and E. W. McFarland, Sol. Energy Mater. Sol. Cells 77 (2003) 229.
    19. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, and K. Domen, Chem. Commun. 3 (1998) 357.
    20. P. E. De Jongh, D. Vanmaekelbergh, and J. J. Kelly, Chem. Commun. 12 (1999) 1069.
    21. P. E. De Jongh, D. Vanmaekelbergh, and J. J. Kelly, J. Electrochem. Soc. 147 (2000) 486.
    22. K. Tennakone, R. Tantrigoda, S. Abeysinghe, S. Punchihewa, and C. A. N. Fernando, J. Photochem. Photobiol. A 52 (1990) 43.
    23. K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe, and H. Arakawa, Chem. Phys. Lett. 277 (1997) 387.
    24. H. Kato, M. Hori, R. Konda, Y. Shimodaira, and A. Kudo, Chem. Lett. 33 (2004) 1348.
    25. R. Abe, K. Sayama, K. Demen, and H. Arakawa, Chem. Phys. Lett. 344 (2001) 339.
    26. K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, Chem. Commun. 23 (2001) 2416.
    27. K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, J. Photochem. Photobiol. A 148 (2002) 71.
    28. R. Abe, K. Sayama, K. Demen, and H. Arakawa, Chem. Phys. Lett. 362 (2002) 441-444
    29. T. D. Golden, M. G. Shumsky, Y. Zhou, R. A. Vanderwerf, R. A. Van Leeuwen, and J. A. Switzer, Chem. Mater., 8 (1996) 2499.
    30. R. Konda, T. Ishii, H. Kato, and A. Kudo, J. Phys. Chem. B 108 (2004) 8992.
    31. T. Ishii, H. Kato, and A. Kudo, J. Photochem. Photobiol.A 163 (2004) 181.
    32. H. Kato, and A. Kudo, J. Phys. Chem. B 106 (2002) 5029.
    33. A. Kudo, A. Tanaka, K. Domen, and T. Onishi, J. Catal., 111 (1988) 296.
    34. K. Domen, A. Kudo, and T. Onishi, J. Catal., 102 (1986) 92.
    35. K. Domen, A. Kudo, and T. Onishi, J. Phys. Chem., 90 (1986) 292.
    36. B. Chang, G. Campet, J. Claverie, and P. Hagenmuller, Bull. Chem. Soc. Jpn., 57 (1984) 2574.
    37. M. Matsumura, M. Hiramoto, and H. Tsubomura, J. Electrochem. Soc., (1983) 326.
    38. Q. Li, K. Domen, S. Naito, T. Onishi, and K. Tamaru, Chem. Lett., (1983) 321.
    39. K. Domen, S. Nalto, T. Onishi, and K. Tamaru, J. Phys. Chem., 86 (1982) 3657.
    40. A. Mackor, and G. Blasse, Chem. Phys. Lett., 77 (1981) 6.
    41. R.U.E. ’t Lam, L.G.J. de Haart, A.W. Wiersma, G. Blasse, A.H.A. Tinnemans, and A. Mackor, Mat. Res. Bull., vol.16, 1981, 1593-1600
    42. J. Lehn, J. Sauvage, and R. Ziessel, Nouv. J. Chim., 4 (1980) 623.
    43. G. Campet, M.P. Dare-Edwards, A. Hamnett, and J. B. Goodenough, Nouv. J. Chim. 4 (1980) 501.
    44. K. Domen, S. Naito, M. Soma, T. Onishi, K. Tamaru, J.C.S. Chem. Comm., (1980) 543
    45. K. Domen, S. Naito, M. Soma, T. Onishi, and K. Tamary, Appl. Phys. Lett., 28 (1976) 241.
    46. S. Burnside, J. Moser, K. Brooks, M. Gratzel, and D. Cahen, J. Phys. Chem. B 103 (1999) 9328
    47. 林孟萱,Ag-SrTiO3奈米核-殼結構粒子之研究與製備,中原大學化學系碩士學位論文,(2003).
    48. 張家豪,以有機前導物法製備SrTiO3粉末及其光催化性質之研究,成功大學資訊工程研究所碩士論文,(2004).
    49. A. E. Rakhshani and J. Varghese, Sol. Energy Mater. 15 (1987) 237.
    50. M. Ristov, G. J. Sinadinovski and M. Mitreski, Thin Solid Films, 167 (1988) 309-316.
    51. P. E. De Jongh, D. Vanmaekelbergh, and J. J. Kelly, Chem. Mater., 11 (1999) 3512-3517.
    52. J. A. Switzer, H. M. Kothari, and E. W. Bohannan, J. Phys. Chem. B., 106 (2002) 4027-4031.
    53. P. Poizot, C. J. Hung, M. P. Nikiforov, E. W, Bohannan, and J. A. Switzer, Electrochem. Solid-State Lett. 6 (2003) C21-C25.
    54. R. Liu, E. W. Bohannan, and J. A. Switzer, Appl. Phys. Letter, 83 (2003) 1944-1946.
    55. Z. Wang, X. Chen, J. Liu, M. Mo, L. Yang, and Y. Qian, Solid State Commun., 130 (2004) 585-589.
    56. Y. Zhou, and J. A. Switzer, Scripta Materialia, 38 (1998) 1731.
    57. E. W. Bohannan, M. G. Shumsky, and J. A. Switzer, Chem. Mater., 11 (1999) 2289.
    58. J. K. Barton, A. A. Vertegel, E. W. Bohannan, and J. A. Switzer, Chem. Mater., 13 (2001) 952.
    59. R. Liu, F. Oba, E. W. Bohannan, F. Ernst, and J. A. Switzer , Chem. Mater., 15 (2003) 4882.
    60. F. Oba, F. Ernst, Y. Yu, R. Liu, H. M. Kothari, and J. A. Switzer, J. Am. Ceram. Soc., 88 (2005) 253.
    61. F. Oba, F. Ernst, Y. Yu, R. Liu, H. M. Kothari, and J. A. Switzer, Chem. Mater., 17 (2005) 725.
    62. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction (3rd edition), Prentice Hall (2001)
    63. S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc., 60 (1938) 390.
    64. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis, Saunders College Publishing, 1998
    65. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; NACE, Houston, TX, 1974.
    66. 荒川裕則,水分解光觸媒技術之最新動向,株式会社シーエムシー出版,日本(2003)
    67. D. W. Hwang, J. Km, T. J. Park, and J. S. Lee, Catal. Lett., 80, 2002, 53-57
    68. M. A. Butler, and D. S. Ginley, J. Electrochem. Soc. 125 (1978) 228
    69. Y. Matsumoto, J. Sol. State Chem. 126 (1996) 227
    70. T. Higuchi, T. Tsukamoto, N. Sata, M. Ishigame, Y. Tezuka, and S. Shin, Phys. Rev. B 57 (1998) 6978.
    71. W. Luo, Wi. Duan, S. G. Louie, and M. L. Cohen, Phys. Rev. B 70 (2004) 214109
    72. M. Cardona, Phys. Rev. A 651 (1965) 140.

    下載圖示 校內:2006-07-25公開
    校外:2006-07-25公開
    QR CODE