簡易檢索 / 詳目顯示

研究生: 黃盟翔
Huang, Meng-Shiang
論文名稱: 介白素-20 在骨關節炎中的研究
Study of Interleukin-20 in Osteoarthritis
指導教授: 張明熙
Chang, Ming-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 細胞激素介白素-20骨關節炎
外文關鍵詞: Cytokine, IL-20, Osteoarthritis
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 骨關節炎 (Osteoarthritis, OA) 屬於退化性關節炎疾病的一種,主要病徵有關節破壞、軟骨下骨硬化、骨刺形成、關節囊及滑膜發炎等。介白素 20 (Interleukin-20, IL-20) 屬於介白素 10 家族的一員,其成員包含有介白素 10、19、20、22、24 及 26。根據文獻得知 IL-20 參與類風溼性關節炎 (Rheumatoid arthritis, RA) 致病機轉中,且打入可溶性 IL-20R1 受體可以降低 collagen-induced arthritis (CIA) 動物模式的嚴重程度。因此,IL-20 在 RA 致病過程中扮演促進的角色。然而,目前不清楚 IL-20 在 OA 的病理機制中扮演的角色,因此本研究主要目的是探討 IL-20 是否也參與 OA 的致病機轉。首先,我們發現在 OA 病人的滑膜組織、軟骨及滑膜纖維母細胞 (OA SFs) 都有 IL-20 與其受體的表現。IL-20 處理 OA SFs後也能誘發 MCP-1 及 IL-6 的表現。利用手術誘發 OA 動物模式中發現,IL-20 與其受體 IL-20R1 都有表現在滑膜纖維母細胞 (OA SFs) 及軟骨細胞 (OA CCs) 上。其中,OA SFs 中 IL-20 表現量高於健康大鼠 SFs。IL-20 處理 OA SFs 後會誘發 TNF-α、IL-1β、IL-6、MMP1 及 MMP-13 表現,也促進 ERK-1/2 及 JNK 磷酸化表現。在動物實驗中,IL-20 單株抗體 (7E) 可以降低關節腫脹、軟骨破壞及滑膜中 IL-1 的表現。由以上實驗結果推測 IL-20 在 OA 的致病過程中可能扮演一個促進發炎的角色。抑制 IL-20 的功能或許可以提供一種新的治療 OA 的策略。

    Osteoarthritis (Osteoarthritis, OA) is a degenerative joint disease characterized by cartilage breakdown, subchondral sclerosis, osteophyte formation, and alterations to the joint capsule and inflammation of the synovial membrane. IL-20 belongs to the IL-10 family, which consists of IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26. We previously showed that IL-20 was involved in RA, and the soluble receptor of IL-20R1 reduced the severity of collagen-induced arthritis (CIA). Therefore, IL-20 is a promoting factor during the progression of (Rheumatoid arthritis, RA). However, little is known about the function of IL-20 in OA. Therefore, we explored whether IL-20 is involved in the pathogenesis of OA. We found that IL-20 and its receptors were expressed in synovial tissue, cartilage and primary synovial fibroblast isolated from OA patients (OASFs). IL-20 induced MCP-1 and IL-6 expression in OASFs. In our rat OA model, IL-20 and its receptors were expressed in chondrocytes and synovial fibroblasts. IL-20 was significantly increased in SFs derived from OA rats compared to healthy rats. IL-20 also induced the expression of TNF-α, IL-1β, IL-6, MMP1, and MMP-13 in SF derived from OA rats. IL-20 activated the phosphorylation of ERK-1/2 and JNK in SFs derived from OA rats. In vivo, anti-IL-20 antibody (7E) reduced the joint swelling, cartilage damage and inhibited the expression of IL-1β in OA rats. These results suggest that IL-20 acts as a pro-inflammatory molecule and plays a pivotal role in the pathogenesis of OA. Blocking IL-20 signaling may be a potential therapeutic strategy for treating OA.

    中文摘要...................................................Ⅰ Abstract..................................................Ⅱ 誌謝......................................................Ⅲ 目錄......................................................Ⅴ 圖目錄.....................................................Ⅹ 附錄目錄.................................................ⅩⅢ 縮寫檢索表...............................................ⅩⅣ 第一章 緒論................................................1 1. 骨關節炎 (Osteoarthritis, OA) ...........................1 2. 細胞激素 (Cytokines).....................................2 3. 細胞激素之拮抗劑 (Antagonist of cytokines)................4 4. 介白素 10 家族 (Interleukin-10 family)..................5 5. 介白素 20 (Interleukin-20).............................6 6. 介白素 20 與關節炎 (Interleukin-20 and arthritis).........6 7. 骨關節炎與訊息傳遞路徑 (Osteoarthritis and signal pathway) ..................................................7 8. 常見大鼠手術建立 OA 動物模式 (Commonly used rat surgical OA models)....................................................8 第二章 研究目的............................................10 第三章 材料與方法..........................................11 1. 實驗材料................................................11 (1) 實驗動物...............................................11 (2) 細胞來源...............................................11 (3) 培養液................................................11 (4) 實驗溶劑...............................................13 2. 實驗方法................................................15 (1) Surgically-induced OA 大鼠關節滑液纖維母細胞 (Synovial fibroblasts) 之分離及培養..................................15 (2) Surgically-induced OA 大鼠軟骨細胞 (Chondrocytes) 之分離及培養......................................................15 (3) 免疫組織化學染色法 (Immunohistochemistry, IHC)..........15 (4) 免疫細胞化學染色法 (Immunocytochemistry)................16 (5) 反轉錄酶- 聚合酶連鎖反應 (Reverse transcriptase polymerase chain reaction, RT-PCR)........................17 (6) 同步定量聚合酶鏈鎖反應 (Real Time Polymerase Chain Reaction, Real Time PCR)..................................17 (7) 西方點墨法 (Western blotting)..........................19 (8) 細胞內訊息傳遞分析 (Signal transduction)................19 (9) 前側、內側韌帶及半月板摘除手術之誘發大鼠骨關節炎動物模式(Surgically-induced anterior cruciate ligament and medial collateral ligament transaction (ACLT and MCLT) and medial meniscal tear (MMT) combination of a rat OA model)........21 A. 大鼠骨關節炎之誘導.......................................21 B. 大鼠骨關節炎組織學評估...................................21 C. 單株抗體之給予..........................................22 D. 利用測徑器測量大鼠關節厚度................................23 E. 偵測滑膜組織中發炎反應之媒介..............................23 (10) 甲基藍 (Toluidine blue) 軟骨組織染色法................23 (11) 利用超高解析度活體動物斷層掃描儀 (Micro computed tomography) 分析大鼠關節破壞度..............................24 第四章 結果...............................................25 1. 於 OA 病人之滑膜組織及軟骨組織有 IL-20 表現................25 2. 於 OA 病人滑膜組織中之滑膜纖維母細胞 (OA SFs) 有 IL-20 及其受體 (receptors) 表現.......................................25 3. IL-20 可誘發 OA 病人膝關節滑膜組織纖維母細胞 (OA SFs) 產生大量 IL-6 及 MCP-1 表現......................................25 4. 於大鼠 OA 動物模式之關節滑膜組織及滑膜纖維母細胞 (OA SFs) 中有 IL-20 表現,其中 OA SFs 有較高量 IL-20 表現..................26 5. IL-20 可誘導大鼠 OA 動物模式之滑膜纖維母細胞 (OA SFs) 產生大量 TNF-α、IL-1β、MMP-1 及 MMP-13 表現......27 6. 於大鼠 OA 動物模式之關節軟骨細胞 (OA CCs) 中有 IL-20R1 表現,其中 OA CCs 有較高量 IL-20R1 表現...........................28 7. IL-20 可誘發大鼠 OA 動物模式之軟骨細胞 (OA CCs) 產生大量 MMP-1、MMP-13 及 ADAMTS-4 表現.................................28 8. IL-20 可降低大鼠 OA 動物模式之軟骨細胞 (OA CCs) 產生TGF-β及 BMP-2 表現................................................29 9. IL-20 引起大鼠 OA 動物模式之滑膜纖維母細胞 (OASFs) 內訊息傳遞分子 Erk1/2 及 JNK 的磷酸化.................................30 10. IL-20 單株抗體 7E 可抑制 OA SFs 產生 MMP-13 表現.........31 11. IL-20 單株抗體 7E 可降低OA大鼠關節腫脹程度...............31 12. IL-20 單株抗體 7E 可抑制OA大鼠滑膜組織表達 IL-1β.........32 13. IL-20 單株抗體 7E 可減緩 OA 大鼠關節軟骨組織中骨刺的形成...33 14.IL-20 單株抗體 7E 可減緩 OA 大鼠關節軟骨下骨硬化及囊狀空洞的形成........................................................33 第五章 討論...............................................35 參考文獻..................................................37 實驗結果圖表...............................................42 附錄......................................................66 自述......................................................72

    1. Claassen, H., M. Schicht, and F. Paulsen, Impact of sex hormones, insulin, growth factors and peptides on cartilage health and disease. Progress in Histochemistry and Cytochemistry, 2011. 45(4): p. 239-293.
    2. Roos, E.M., et al., Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis. Nature Reviews Rheumatology, 2010. 7(1): p. 57-63.
    3. Valdes, A.M. and T.D. Spector, The clinical relevance of genetic susceptibility to osteoarthritis. Best Practice & Research Clinical Rheumatology, 2010. 24(1): p. 3-14.
    4. Sofat, N., Analysing the role of endogenous matrix molecules in the development of osteoarthritis. International Journal of Experimental Pathology, 2009. 90(5): p. 463-479.
    5. Sellam, J. and F. Berenbaum, The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nature Reviews Rheumatology, 2010. 6(11): p. 625-635.
    6. Kapoor, M., et al., Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature Reviews Rheumatology, 2010. 7(1): p. 33-42.
    7. Funck-Brentano, T. and M. Cohen-Solal, Crosstalk between cartilage and bone: When bone cytokines matter. Cytokine & Growth Factor Reviews, 2011. 22(2): p. 91-97.
    8. Shin, S.Y. and A.M. Kolanowski, Best Evidence of Psychosocially Focused Nonpharmacologic Therapies for Symptom Management in Older Adults with Osteoarthritis. Pain Management Nursing, 2010. 11(4): p. 234-244.
    9. Reeves, N.D. and F.L. Bowling, Conservative biomechanical strategies for knee osteoarthritis. Nature Reviews Rheumatology, 2011. 7(2): p. 113-122.
    10. Waddell, D.D. and J.M. Bert, The Use of Hyaluronan After Arthroscopic Surgery of the Knee. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 2010. 26(1): p. 105-111.
    11. Berg, P.M.v.d.K.a.W.B.v.d., Anabolic and destructive mediators in osteoarthritis.pdf. Current Opinion in Clinical Nutrition and Metabolic Care, 2000. 3: p. 205±211.
    12. Sharif, C.I.W.a.M., <Cytokines in Osteoarthritis Mediators or Markers of.pdf>. Seminars in Arthritis and Rheumatism, 1996. 25(4): p. 254-272.
    13. Sharif, C.I.W.a.M., Osteoarthritis. Bull NYU Hosp Jt Dis., 2008. 66((3)): p. 244-50.
    14. Chen, B., et al., Effects of adenovirus-mediated bFGF, IL-1Ra and IGF-1 gene transfer on human osteoarthritic chondrocytes and osteoarthritis in rabbits. Experimental and Molecular Medicine, 2010. 42(10): p. 684.
    15. Shuhei Otsukia, S.R.H., Shigeru Miyakia, Shawn P. Grogana, Mitsuo Kinoshitac, Hiroshi Asaharaa, and a.M.K.L. Chi-Huey Wongb, Extracellular sulfatases support cartilage homeostasis. Proceedings of the National Academy of Sciences, 2010. 107(22): p. 10202–10207.
    16. Hashimoto, M., et al., Molecular network of cartilage homeostasis and osteoarthritis. Medicinal Research Reviews, 2008. 28(3): p. 464-481.
    17. Abramson, S.B., Osteoarthritis and nitric oxide. Osteoarthritis and Cartilage, 2008. 16: p. S15-S20.
    18. Hunter, D.J., Pharmacologic therapy for osteoarthritis—the era of disease modification. Nature Reviews Rheumatology, 2010. 7(1): p. 13-22.
    19. Attur, M., et al., Targeting the synovial tissue for treating osteoarthritis (OA): where is the evidence? Best Practice & Research Clinical Rheumatology, 2010. 24(1): p. 71-79.
    20. Beyer, C. and G. Schett, Novel targets in bone and cartilage. Best Practice & Research Clinical Rheumatology, 2010. 24(4): p. 489-496.
    21. Sabat, R., IL-10 family of cytokines. Cytokine & Growth Factor Reviews, 2010. 21(5): p. 315-324.
    22. Renauld, J.-C., Class II cytokine receptors and their ligands: Key antiviral and inflammatory modulators. Nature Reviews Immunology, 2003. 3(8): p. 667-676.
    23. Commins, S., J.W. Steinke, and L. Borish, The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. Journal of Allergy and Clinical Immunology, 2008. 121(5): p. 1108-1111.
    24. Kragstrup, T., The expression of IL-20 and IL-24 and their shared receptors are increased in rheumatoid arthritis and spondyloarthropathy. Cytokine, 2008. 41(1): p. 16-23.
    25. Horiuchi, M., et al., Expression and Function of Histone Deacetylases in Rheumatoid Arthritis Synovial Fibroblasts. The Journal of Rheumatology, 2009. 36(8): p. 1580-1589.
    26. Hsu, Y.-H., et al., Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis & Rheumatism, 2006. 54(9): p. 2722-2733.
    27. Hsu, Y.-H. and M.-S. Chang, Interleukin-20 antibody is a potential therapeutic agent for experimental arthritis. Arthritis & Rheumatism, 2010. 62(11): p. 3311-3321.
    28. Goldring, M.B. and K.B. Marcu, Cartilage homeostasis in health and rheumatic diseases. Arthritis Research & Therapy, 2009. 11(3): p. 224.
    29. Goldring, M.B., et al., Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Annals of the Rheumatic Diseases, 2008. 67(Suppl 3): p. iii75-iii82.
    30. Richard F. Loeser, E.A.E.a.D.L.L., Mitogen-activated protein kinases as therapeutic targets.pdf. Current Opinion in Rheumatology, 2008. 20: p. 581–586.
    31. Sondergaard, B.C., et al., MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation – divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation. Osteoarthritis and Cartilage, 2010. 18(3): p. 279-288.
    32. Prasadam, I., et al., Osteoarthritic cartilage chondrocytes alter subchondral bone osteoblast differentiation via MAPK signalling pathway involving ERK1/2. Bone, 2010. 46(1): p. 226-235.
    33. Marotte, H., et al., Blocking ERK-1/2 reduces tumor necrosis factor α-induced interleukin-18 bioactivity in rheumatoid arthritis synovial fibroblasts by induction of interleukin-18 binding protein A. Arthritis & Rheumatism, 2010. 62(3): p. 722-731.
    34. Gerwin, N., et al., The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat. Osteoarthritis and Cartilage, 2010. 18: p. S24-S34.
    35. Kamekura, S., et al., Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis and Cartilage, 2005. 13(7): p. 632-641.
    36. Janusz, M., Induction of osteoarthritis in the rat by surgical tear of the meniscus: Inhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarthritis and Cartilage, 2002. 10(10): p. 785-791.
    37. Bertrand, J., et al., Molecular mechanisms of cartilage remodelling in osteoarthritis. The International Journal of Biochemistry & Cell Biology, 2010. 42(10): p. 1594-1601.
    38. Murphy, G. and H. Nagase, Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nature Clinical Practice Rheumatology, 2008. 4(3): p. 128-135.
    39. Rousseau, J.-C. and P.D. Delmas, Biological markers in osteoarthritis. Nature Clinical Practice Rheumatology, 2007. 3(6): p. 346-356.
    40. Abramson, S.B., Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Research & Therapy, 2008. 10(Suppl 2): p. S2.
    41. Lin, H.-D., et al., The effect of low-level laser to apoptosis of chondrocyte and caspases expression, including caspase-8 and caspase-3 in rabbit surgery-induced model of knee osteoarthritis. Rheumatology International, 2010.
    42. Anderson, H.C., D. Mulhall, and R. Garimella, Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Laboratory Investigation, 2010. 90(11): p. 1549-1557.
    43. Shakibaei, M., A. Mobasheri, and C. Buhrmann, Curcumin synergizes with resveratrol to stimulate the MAPK signaling pathway in human articular chondrocytes in vitro. Genes & Nutrition, 2010. 6(2): p. 171-179.
    44. Muddasani, P., et al., Basic Fibroblast Growth Factor Activates the MAPK and NF B Pathways That Converge on Elk-1 to Control Production of Matrix Metalloproteinase-13 by Human Adult Articular Chondrocytes. Journal of Biological Chemistry, 2007. 282(43): p. 31409-31421.
    45. Calich, A.L.G., D.S. Domiciano, and R. Fuller, Osteoarthritis: can anti-cytokine therapy play a role in treatment? Clinical Rheumatology, 2010. 29(5): p. 451-455.
    46. Bondeson, J., et al., The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis & Rheumatism, 2010. 62(3): p. 647-657.
    47. Pastoureau, P.C., E.B. Hunziker, and J.P. Pelletier, Cartilage, bone and synovial histomorphometry in animal models of osteoarthritis. Osteoarthritis and Cartilage, 2010. 18: p. S106-S112.
    48. Goldring, M.B. and S.R. Goldring, Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Annals of the New York Academy of Sciences, 2010. 1192(1): p. 230-237.
    49. Loeser, R.F., Molecular mechanisms of cartilage destruction in osteoarthritis. J Musculoskelet Neuronal Interact, 2008. 8((4)): p. 303-306.
    50. Wancket, L., et al., Anatomical Localization of Cartilage Degradation Markers in a Surgically Induced Rat Osteoarthritis Model. Toxicologic Pathology, 2005. 33(4): p. 484-489.
    51. Schmitz, N., et al., Basic methods in histopathology of joint tissues. Osteoarthritis and Cartilage, 2010. 18: p. S113-S116.
    52. Koh, Y.H., et al., The effects of bone turnover rate on subchondral trabecular bone structure and cartilage damage in the osteoarthritis rat model. Rheumatology International, 2009. 30(9): p. 1165-1171.
    53. Saal, A., et al., Macroscopic and radiological grading of osteoarthritis correlates inadequately with cartilage height and histologically demonstrable damage to cartilage structure. Rheumatology International, 2005. 25(3): p. 161-168.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE