| 研究生: |
李彥翰 Lee, Yan-Han |
|---|---|
| 論文名稱: |
產能規劃系統建構之研究—以光學眼鏡製造為例 A Study on the Implementation of Capacity Planning System—Case of Optical Glasses Manufacturing |
| 指導教授: |
楊大和
Yang, Ta-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 產能需求規劃 、粗略產能規劃 、需求管理 、在製品 、產能負荷分配 |
| 外文關鍵詞: | Capacity requirement planning, Rough-cut capacity planning, Demand management, Work-in process, Capacity load allocation |
| 相關次數: | 點閱:156 下載:32 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
產能規劃作為生產管理經典的研究議題,連動前端物料規劃、需求管理及後方製造現場如何進行有效投料、生產與輸出,因此良好的執行產能規劃對企業在掌握己身之經營策略,保有市場競爭力上都有密不可分的關係,這也促使多年來產官學界對產能規劃議題之研究蓬勃發展,以因應當代需求多變、數位成熟、產品複雜化等產業環境與銷售型態。產能規劃涵蓋內容甚多,其中與需求管理連結的粗略產能規劃(Rough-cut capacity planning, RCCP)主要針對企業接受到的新訂單做負荷規劃,不僅可以幫助管理者去做人、機資源分配,並輔助其快速能做出相對應的決策。
本研究以一家眼鏡製造公司為案例實證對象,內容主要包含兩大部分。其一,善用該公司既有的資訊架構與數據,建置產能規劃平台。相較於傳統的產能規劃議題,本研究特色為規劃時便納入現場在製品(Work-in process, WIP)的考量,因其占比已影響大盤產能的估算而不可忽視,尤其處於規劃需求階段而言,可謂本非典型產能規劃之核心,同時也包含如工時計算、排單邏輯、集結生產等特殊功能實作,有別於過去既定平台或商業軟體之限制性;其二,針對視覺化後的製程負荷分配,給予調整超載的訂單負荷相關分配建議,分別發展出六種基於人為規則、方法論之決策模型,並使用現況與另一情境實驗進一步分析改善情況與原因。
實證研究中,第一部分為實際建構出符合產業客製化需求的產能規劃管理平台,其中如使用顏色進行訂單調整時的連動、視覺化儀表板的負荷呈現、工時統計資訊計算彙整與相關開發應用。第二部分屬於訂單負荷的調整,從現況分析中可得知在新單負荷比例過小的現況下,對整體績效指標的改善率未有幫助;反之,情境實驗以新單負荷比例高做負荷調整,即可發現各方法針對改善前後之數值有所提升,當中又以交期調整法為最佳,也呼應現行案例公司需耗費人力、時間,卻使用之訂單排單模式。由此,來達到可供案例企業在管理產能決策時更有所依據、快速與彈性之目的。
As a classic research topic in production management, capacity requirements planning (CRP) is linked to material planning, demand management, and how to carry out effective material feeding and output at the manufacturing site. Therefore, a good implementation of CRP will help companies master their own business strategies and maintain market competitiveness. The vigorous development of research on CRP issues in the industry and academic circles over the years, in order to respond to the changing needs of the times and product complexity of production environments. CRP covers a lot of content. Rough-cut capacity planning (RCCP), which is linked to demand management, is mainly for load planning of new orders received by enterprises. RCCP can help managers to allocate human and machine resources, and make corresponding decisions quickly.
This study takes an optical glasses manufacturing as a case study. First, use the company's existing information system to build a CRP platform. Compared with the traditional CRP issues, the feature of this study is that the work-in process (WIP) is considered in planning, which cannot be ignored because its proportion has affected the stage of the estimation of the capacity. CRP platform also includes the other special functions such as standard processing time, scheduling logic, etc., which is different from the limitations of the established platforms or commercial software in the past. Secondly, aiming at the process load distribution after visualization, CRP platform gives suggestions for adjusting the overloaded order load distribution. In this study, we develop six decision-making models to analyze the current and experimental situation, their improvement and reasons.
In the empirical study, first part is to build a CRP platform, concluding of color for order adjustment, the dashboard of the load display, some statistical information, and related development application. The second part is to adjust the load. For current situation, it can be known that the improvement rate of the performance index is not helpful when the proportion of the new order load is too small, it can be found that each method has improved in another experiment, and the delivery-based adjustment method is the best, which also echoes the current model of company to do demand management. As a result, the purpose of providing company with more basis, speed and flexibility in managing production capacity decisions can be achieved.
經濟部中小企業處,2021,中小企業白皮書,台北:經濟部中小企業處。
經濟部統計處,2021,工業產銷存動態調查,available at
https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDB.aspx(取得日期:2022.04.25)
Abrishami, H., & Varahrami, V. (2012). Survey of a rule based expert system for gas price forecasting. World Applied Sciences Journal, 16(4), 493-500.
Bahroun, Z. (2011). An advanced load adjustment approach without task interruption for flow-shops. International Journal of Industrial and Systems Engineering, 7(3), 381-413.
Bretthauer, K. M., & Côté, M. J. (1997). Nonlinear programming for multiperiod capacity planning in a manufacturing system. European Journal of Operational Research, 96(1), 167-179.
Chen, P. P. S. (1976). The entity-relationship model—toward a unified view of data. ACM Transactions on Database Systems (TODS), 1(1), 9-36.
Chua, T. J., Liu, M. W., Wang, F. Y., Yan, W. J., & Cai, T. X. (2007). An intelligent multi-constraint finite capacity-based lot release system for semiconductor backend assembly environment. Robotics and Computer-Integrated Manufacturing, 23(3), 326-338.
Daniel, V., Guide Jr, R., & Spencer, M. S. (1997). Rough-cut capacity planning for remanufacturing firms. Production Planning & Control, 8(3), 237-244.
Ebersbach, S., & Peng, Z. (2008). Expert system development for vibration analysis in machine condition monitoring. Expert Systems with Applications, 34(1), 291-299.
Gademann, N., & Schutten, M. (2005). Linear-programming-based heuristics for project capacity planning. Iie Transactions, 37(2), 153-165.
Groothuis, S., Merode, G. V., & Hasman, A. (2001). Simulation as decision tool for capacity planning. Computer Methods and Programs in Biomedicine, 66(2-3), 139-151.
Guide Jr, V. D. R., Srivastava, R., & Spencer, M. S. (1997). An evaluation of capacity planning techniques in a remanufacturing environment. International Journal of Production Research, 35(1), 67-82.
Higgins, A., & Davies, I. (2005). A simulation model for capacity planning in sugarcane transport. Computers and Electronics in Agriculture, 47(2), 85-102.
Hopp, W. J., & Spearman, M. L. (2011). Factory physics. Illinois : Waveland Press.
Jodlbauer, H., & Reitner, S. (2012). Material and capacity requirements planning with dynamic lead times. International Journal of Production Research, 50(16), 4477-4492.
Kastner, J. K., & Hong, S. J. (1984). A review of expert systems. European Journal of Operational Research, 18(3), 285-292.
Kusiak, A., & Chen, M. (1988). Expert systems for planning and scheduling manufacturing systems. European Journal of Operational Research, 34(2), 113-130.
Lee, K. C., & Lee, S. (2012). A causal knowledge-based expert system for planning an Internet-based stock trading system. Expert Systems with Applications, 39(10), 8626-8635.
Leng, G. W., & Teen, L. K. (1992). ESPCRM—An expert system for personal computer repair and maintenance. Engineering Applications of Artificial Intelligence, 5(2), 121-133.
Martin, R. L., & White, C. (2005). Finite capacity scheduling—packed placement sequence schedule. International Journal of Production Research, 43(2), 405-446.
Morita, D., & Suwa, H. (2015). An exact method for robust capacity requirements planning. International Journal of Automation Technology, 9(3), 216-221.
Néron, E., Baptiste, P., & Gupta, J. N. (2001). Solving hybrid flow shop problem using energetic reasoning and global operations. Omega, 29(6), 501-511.
Nagendra, P. B., & Das, S. K. (2001). Finite capacity scheduling method for MRP with lot size restrictions. International Journal of Production Research, 39(8), 1603-1623.
Pérez-Romero, J., Sallent, O., Ferrús, R., & Agustí, R. (2015). Artificial intelligence-based 5G network capacity planning and operation. In 2015 International Symposium on Wireless Communication Systems (ISWCS), 246-250. IEEE
Permana, S., Andriani, M., & Dewiyana, D. (2021). Production Capacity Requirements Planning Using The Capacity Method Requirement Planning. International Journal of Engineering, Science and Information Technology, 1(4), 36-40.
Stevenson, W. J. (2015). Operations management. New York: McGraw-Hill Education.
Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Blasco, J. (2014). Dendroid: A text mining approach to analyzing and classifying code structures in android malware families. Expert Systems with Applications, 41(4), 1104-1117.
Taal, M., & Wortmann, J. C. (1997). Integrating MRP and finite capacity planning. Production Planning & Control, 8(3), 245-254.
Tan, C. F., Wahidin, L. S., Khalil, S. N., Tamaldin, N. H. J., & Rauterberg, G. W. M. (2016). The application of expert system: A review of research and applications. ARPN Journal of Engineering and Applied Sciences, 11(4), 2448-2453.
Tripathi, K. P. (2011). A review on knowledge-based expert system: concept and architecture. IJCA Special Issue on Artificial Intelligence Techniques-Novel Approaches & Practical Applications, 4, 19-23.
Van den Heuvel, W., & Wagelmans, A. P. (2008). Four equivalent lot-sizing models. Operations Research. Letters, 36(4), 465-470.
Vollmann, T. E., Berry, W. L., & Whybark, D. C. (1992). Manufacturing Planning and Control Systems. Homewood: Richard D. Irwin.
Wortman, J. C., Euwe, M. J., Taal, M., & Wiers, V. C. S. (1996). A review of capacity planning techniques within standard software packages. Production Planning & Control, 7(2), 117-128.