| 研究生: |
朱孫孝 Jhu, Sun-Siao |
|---|---|
| 論文名稱: |
以噴霧及電紡絲法製備二氧化矽超滑表面 Fabrication of Slippery Liquid-Infuse Porous/Textured SiO2 Surface by Spraying and Electrospinning |
| 指導教授: |
陳進成
Chen, Chin-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 超滑表面 、電紡絲 、雙疏表面 |
| 外文關鍵詞: | Slippery Liquid Infused Porous Surface, Electrospinning, omniphobic surface |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討如何以二氧化矽為材料製備具雙疏特性之超滑表面,並比較以不同結構粗糙基底製成之超滑表面其滑動效能隨時間的變化。首先製備以二氧化矽為材料之粗糙表面並以改質劑Trichloro(1H,1H,2H,2H-perfluorooctyl)silane將碳氟鍵官能基嫁接於二氧化矽表面,使之成為具低表面能之粗糙結構,再灌入低表面能之潤滑劑(Perfluoropolyether, Solvay, Fomblin M03)製成超滑表面。
本研究以兩種方法製備不同結構之二氧化矽粗糙表面,第一種方法為二氧化矽粒子膠體溶液噴灑在塗佈於玻璃基板的矽膠層,以矽膠為黏著層黏著微米級二氧化矽粒子,經熱固化處理後得到具有二氧化矽粒子突起結構之粗糙表面,第二種方法為將二氧化矽前驅溶液經電紡絲法製備成二氧化矽之奈米纖維,並以此纖維交織構成的膜作為超滑表面之粗糙基底。
實驗結果顯示將低表面能潤滑劑填入粗糙結構便可製成超滑表面,使水珠能夠在3∘,油酸能夠在5∘的滑動角滑動。在水流沖刷測試上,對不同平均粒徑二氧化矽粒子所構成之超滑表面,較小粒徑二氧化矽有較佳耐沖刷效果;而對不同平均粗細纖維所構成之超滑表面,較細的纖維有較佳耐沖刷效果。兩方法製備之超滑表面,以纖維製成之超滑表面有較佳耐沖刷效果。故由本實驗結果可知,較小粗糙度及高孔隙特性的基底構成之超滑表面在水流沖刷下具有較佳的耐久性。
In this study, the water/oil-repellent Slippery Liquid Infused Porous Surface (SLIPS) with low sliding angle of water (<3∘) and oleic acid (<8∘) was fabricated by infusing the lubricant(Perfluoropolyether, Solvay, Fomblin M03) onto the fluorinated SiO2 textured substrates. The substrates were fabricated in two different ways. One is spraying the silica particle on the silicone gel and then curing the gel to bind the particle and form the texture substrate. Another method is fabricating the silica fiber mat by electrospinning as porous substrate. The substrates were modified by grafting the fluorinated coupling agent(Trichloro(1H,1H,2H,2H-perfluorooctyl)Silane) on the surface of SiO2 substrates. The lubricant was infused onto the modified textured substrate and form the SLIPS.
The effect of the underlying substrates on their abilities to retain the lubricant under water flow(34cm/min) was investigated. By comparing the sliding angle of water droplet(10µl) on the washed SLIPS, the substrates with smaller surface roughness and more pores provides larger capillary force to entrap the lubricant, leading to better durability under water flow system.
1. Darmanin, T. and F. Guittard, Superhydrophobic and superoleophobic properties in nature. Materials Today, 2015. 18(5): p. 273-285.
2. Barthlott, W. and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202(1): p. 1-8.
3. Wong, T.-S., et al., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011. 477(7365): p. 443-447.
4. Kim, P., et al., Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano letters, 2013. 13(4): p. 1793-1799.
5. 王怡婷 and 張豐志, 超疏水表面之製備及其學理研究. 2005.
6. Yuan, Y. and T.R. Lee, Contact angle and wetting properties, in Surface science techniques. 2013, Springer. p. 3-34.
7. Feng, L., et al., Petal effect: a superhydrophobic state with high adhesive force. Langmuir, 2008. 24(8): p. 4114-4119.
8. 原子世界-蓮花效應-蓮花效應的原理,Hong Kong,
http://www.hk-phy.org/atomic_world/lotus/lotus02_c.html.
9. Mao, C., et al., Preparation of lotus-leaf-like polystyrene micro-and nanostructure films and its blood compatibility. Journal of Materials Chemistry, 2009. 19(47): p. 9025-9029.
10. Li, X.-M., D. Reinhoudt, and M. Crego-Calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chemical Society Reviews, 2007. 36(8): p. 1350-1368.
11. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994.
12. Wikipedia, "Wetting", USA,https://en.wikipedia.org/wiki/Wetting.
13. Feng, X. and L. Jiang, Design and creation of superwetting/antiwetting surfaces. Advanced Materials, 2006. 18(23): p. 3063-3078.
14. Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40: p. 546-551.
15. Bico, J., U. Thiele, and D. Quéré, Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 206(1): p. 41-46.
16. 李政恩, 可調控潤濕性及黏著性的透明表面之設計與製備. 成功大學化學工程學系學位論文, 2012: p. 1-129.
17. Liu, T. and C. Kim, Turning a surface superrepellent even to completely wetting liquids. Science, 2014. 346(6213).
18. 吳方伶, 奈米結構塗層表面之超疏水/疏油行為探討. 元智大學化學工程與材料科學學系學位論文, 2009: p. 1-147.
19. Zhang, J. and S. Seeger, Superoleophobic coatings with ultralow sliding angles based on silicone nanofilaments. Angewandte Chemie International Edition, 2011. 50(29): p. 6652-6656.
20. Smith, J.D., et al., Droplet mobility on lubricant-impregnated surfaces. Soft Matter, 2013. 9(6): p. 1772-1780.
21. 安光明, et al., 基于微纳结构液体灌注的超滑表面的制备与应用. 化学进展, 2015. 27(12): p. 1705-1713.
22. Smith, J.D., et al., Self-lubricating surfaces for food packaging and food processing equipment. 2015, Google Patents.
23. Aswal, D., et al., Self assembled monolayers on silicon for molecular electronics. Analytica chimica acta, 2006. 568(1): p. 84-108.
24. Chen, L.-J., et al., Effect of water content in solvent on the critical temperature in the formation of self-assembled hexadecyltrichlorosilane monolayers on mica. Chemical physics letters, 2001. 346(3): p. 241-245.
25. Liquiglide,USA,http://liquiglide.com/.
26. Solomon, B.R., K.S. Khalil, and K.K. Varanasi, Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir, 2014. 30(36): p. 10970-10976.
27. Kim, P., et al., Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS nano, 2012. 6(8): p. 6569-6577.
28. MacCallum, N., et al., Liquid-infused silicone as a biofouling-free medical material. ACS Biomaterials Science & Engineering, 2014. 1(1): p. 43-51.
29. Huang, Z.-M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 2003. 63(15): p. 2223-2253.
30. Bhushani, J.A. and C. Anandharamakrishnan, Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology, 2014. 38(1): p. 21-33.
31. Lin, Y., et al., Preparation of poly (ether sulfone) nanofibers by gas‐jet/electrospinning. Journal of Applied Polymer Science, 2008. 107(2): p. 909-917.
32. Zhu, N. and X. Chen, Biofabrication of tissue scaffolds. 2013: INTECH Open Access Publisher.
33. Andreas Dahlin, "Atmospheric Ionization Methods", USA, http://www.waters.com/waters/zh_TW/Common-Ionization/nav.htm?cid=10073251&locale=zh_TW,2008
34. Kim, I.D. and A. Rothschild, Nanostructured metal oxide gas sensors prepared by electrospinning. Polymers for Advanced Technologies, 2011. 22(3): p. 318-325.
35. Shao, C., et al., Fiber mats of poly (vinyl alcohol)/silica composite via electrospinning. Materials Letters, 2003. 57(9): p. 1579-1584.
36. Choi, S.-S., et al., Silica nanofibers from electrospinning/sol-gel process. Journal of Materials Science Letters, 2003. 22(12): p. 891-893.
37. Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press.
38. Iler, R.K., The chemistry of silica: solubility, polymerization, colloid and surface pro perties, and biochemistry. 1979: Wiley.
39. Brinker, C.J. and G.W. Scherer, Sol→ gel→ glass: I. Gelation and gel structure. Journal of Non-Crystalline Solids, 1985. 70(3): p. 301-322.
40. Nogami, M. and Y. Moriya, Glass formation through hydrolysis of Si (OC 2 H 5) 4 with NH 4 OH and HCl solution. Journal of Non-Crystalline Solids, 1980. 37(2): p. 191-201.
41. Klein, L., Sol-gel processing of silicates. Annual Review of Materials Science, 1985. 15(1): p. 227-248.
42. 國立成功大學微奈米科技研究中心-掃描式電子顯微鏡操作使用手冊
43. 國立成功大學化學工程學系-傅立葉轉換式紅外線光譜儀管理使用辦法
44. Jana, S., et al., Non-hydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins. Materials Chemistry and Physics, 2008. 112(3): p. 1008-1014.
45. Rajput, D., et al., Silica coating of polymer nanowires produced via nanoimprint lithography from femtosecond laser machined templates. Nanotechnology, 2012. 23(10): p. 105304.
46. Burneau, A. and C. Carteret, Near infrared and ab initio study of the vibrational modes of isolated silanol on silica. Physical Chemistry Chemical Physics, 2000. 2(14): p. 3217-3226.
47. Lenza, R.F. and W.L. Vasconcelos, Structural evolution of silica sols modified with formamide. Materials Research, 2001. 4(3): p. 175-179.
48. Yue, R., et al., One-step flame synthesis of hydrophobic silica nanoparticles. Powder technology, 2013. 235: p. 909-913.
49. Rodriguez, M.A., et al., Study of the reaction of γ–methacryloxypropyltrimethoxysilane (γ–MPS) with slate surfaces. Journal of materials science, 1999. 34(16): p. 3867-3873.
50. Zhuravlev, L., The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000. 173(1): p. 1-38.
51. Ma, M., et al., Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules, 2005. 38(23): p. 9742-9748.
52. 全國靜電環保設備有限公司-靜電集塵原理,Taiwan,
http://national-esd.myweb.hinet.net/b/b.htm.
校內:2021-08-31公開