| 研究生: |
吳杰儒 Wu, Chieh-Ju |
|---|---|
| 論文名稱: |
奈米微粒雷射熱治療效率提升技術之研發 Development of Nanoparticles Laser Photothermal Therapy Technology for Efficiency Enhancement |
| 指導教授: |
賴新一
Lai, Hsin-Yi Steven |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 熱治療 、奈米微粒 |
| 外文關鍵詞: | photothermal, nanoparticles |
| 相關次數: | 點閱:110 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米微粒加熱系統一直有準確度不佳且加熱效率不高因而導致應用於生醫上治療效率不佳的問題存在。由於此技術的使用場合(生物熱治療),欲有較佳之治療效率,對於準確控制溫度的要求相當高,而目前在溫度計算上皆有高估的情形(誤差約11%)。且加熱之微粒粒徑與照射波長亦不是吸收效果較佳之組合。考慮液體中添加奈米微粒後,液體會因為微粒在液體中的運動的關係,對液體之熱導係數產生些微提升的影響,在導入溫度計算的模型重新估算系統溫度可以提高溫度計算的準確。而就目前研究顯示,奈米微粒之製程技術已逐漸成熟,不在限定特殊之粒徑,因此可以利用不同粒徑對應雷射波長會有不同吸收效率的關係,以電腦模擬找出吸收效率較佳之粒徑、波長與微粒溫度估算上,做整合性的理論分析。有鑑於此,本研究將建構一套完整的理論模型與電腦模擬方法,以討論加熱效率提升之相關問題。
提高加熱效率一般可朝兩方向進行,第一為尋找吸收效率相對較佳之粒徑與波長組合,其二為降低液體之熱導係數增量。有鑑於此,本文乃利用布朗動力模擬配合格林久保法以求得微粒熱導係數增量,接著代入修正Hamilton-Crosser方程式,估算求得液體之熱導係數增量。在計算系統溫度上,除了以液體之熱導係數增量來修正溫度計算的模型之外,在微粒的吸收效率上,利用米氏定理配合古典靜電力學求取微粒在不同參數下的吸收效率因子(如粒徑、照射雷射波長),藉著調控此二參數得到較佳之吸收效率因子。以液體熱導係數增量與吸收效率因子對系統溫度的影響來提高加熱效率。最後設計一個分析流程,設計生物熱治療案例加以印證。
本文在計算熱導係數增量時將液體黏滯係數受溫度影響產生之變化納入考慮,使得熱導係數增量的計算上之平均誤差由17.7%減少至8.6%,證實黏滯係數之影響確實不可忽略。而在系統溫度的計算上,誤差也減少了10%,說明了液體熱導係數增量的考慮有其必要。在提升效率上,利用粒徑與雷射波長的搭配,代入生物熱治療之應用實例中,使加熱治療之效率提升了約17.4%。設計案例證實了本文所提理論及流程確實可行。
In the past, the heating system of nanometer particles has been perplexed by the problem of poor inaccuracy and low heating efficiency. Since the technology is of high demand on exact control of temperature (biological laser photothermal therapy), the error of temperature over-estimation(approximately 11%) is still not acceptable. In addition, the diameter and wavelength of nanoparticles in heating process are not in the best combination of absorbing effect. After considering adding nanoparticles in liquid, the thermal conductivity of the liquid will slightly arise because of the particles’ motion within the liquid. By putting the thermal conductivity of particles’ affection into the temperature estimation model, the accuracy of system temperature estimation can be enhanced. As the present research shows, the fabrication technology of nanoparticles is becoming more and more mature. Free from the limit of specific diameter, one can use different levels of diameter and its corresponding laser wavelength to observe the relation of absorbing effect. Therefore, computer simulation can be used to find out the diameter and wavelength with the best effect, together with the temperature estimation of the particle, and also completing the theory with a integrative analysis. To sum up, this research is to construct a complete modeling and computer simulation technique, and to study the related issues of upgrading heating efficiency.
Heating efficiency can be improved by two ways. First is to find a better absorbing efficiency and its corresponding combination of diameter and wavelength, and the second is to cut down the increment of thermal conductivity of liquid. The paper makes use of molecular dynamics simulation, along with Green-Kubo formula to obtain the increment of thermal conductivity of nanoparticles. Then, by adding in the modified Hamilton-Crosser equation, the increment of thermal conductivity of liquid can be obtained. When computing the system temperature, the use of thermal conductivity increment of liquid to modify the model of temperature calculation, and the absorbing efficiency of particles, Mie’s theory and classical electrostatic dynamics are employed to obtain absorbing efficiency factors of particles for different parameters (ex, diameter and laser wavelength). By adjusting these two parameters, one can obtain better absorbing efficiency factors. Heating efficiency is, therefore, improved via the influence of both the increment of thermal conductivity of liquid and the heating efficiency factors on system temperature. At the end, an analytical process is designed to show the effectiveness of biological laser photothermal therapy.
By taking the viscosity of liquid associated with temperature variation into consideration for thermal conductivity increment of liquid, the average estimation error of the thermal conductivity increment is decreased from 17.7% to 8.6%. This indicates that the affection of viscosity is crucial. On the calculation of system temperature, the average error is decreased approximately 10%. This also indicates the consideration of liquid thermal conductivity is necessary. On the efficiency enhancement, the use of both diameter and laser wavelength in the biological laser photothermal therapy increase the heating efficiency for approximately 17.4%.
1.Bhattacharya, S. K. Saha,“Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids,”Journal of Applied Physics, Vol. 95, No. 11, pp. 6492, 2004
2.Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles, (A Wiley-International Publication, New York, 1995)
3.Costas M. Pitsillides, Edwin K. Joe,“Selective cell targeting with light-absorbing microparticles and nanoparticles,”Biophysical Journal, Vol. 84, pp. 4023-4032, 2003
4.Chen,“Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles,”Journal of Heat Transfer, Vol. 118, pp. 539, 1996
5.Christophe Voisin, Natalia Del Fatti,“Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,”J. Phys. Chem. B., Vol. 105, pp. 2264-2280, 2001
6.David Boyer, Philippe Tamarat,“Photothermal imaging of nanometer-sized metal particles among scatterers,”Science, Vol. 297, pp. 1160, 2002
7.Dmitri O. Lapotko, Tat’yana R. Romanovskaya,“Photothermal time-resolved imaging of living cells,”Laser in Surgery and Medicine, Vol. 31, pp. 53-63, 2002
8.Eastman, S. R. Phillpot,“Thermal transport in nanofluids,”Annu. Rev. Mater. Res., Vol. 34, pp. 219-246, 2004
9.Gereon Huttmann, Jesper Serbin,“Model system for investigating laser-induced subcellular microeffects,”Proceeding of SPIE Vol. 4257, Laser-Tissue Interaction XII, 2001
10.Gereon Huttmann, Reginald Birngruber,“On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins,”IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 4, pp. 954, 1999
11.Goldbenberg,“Heat flow in an infinite medium heated by a sphere,”British Journal of Applied Physics, pp296, 1958
12.Hemanth Kumar, Hrishikesh E. Patel,“Model for heat conduction in nanofluids,”Physical Review Letters, Vol. 93, No. 14, pp. 144301, 2004
13.Hideaki Kurita, Akinori Takami,“Size reduction of gold particles in aqueous solution by pulsed laser irradiation,”Applied Physics Letters, Vol. 72, No. 7, pp.789, 1998
14.Ivan Charamisinau, Gemune Happawana,“Semiconductor laser insert with uniform illumination for use in photodynamic therapy,”Applied Optics, Vol. 44, No. 24, pp. 5055, 2005
15.Keblinski, S. R. Phillpot,“Mechanisms of heat flow in suspensions of nano-sized particles,”International Journal of Heat and Mass Transfer, Vol. 45, pp. 855-863, 2002
16.Kotaidis, C. Dahmen,“Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,”The Journal of Chemical Physics, Vol. 124, pp. 18472, 2006
17.Kreibig, M. Vollmer, Optical Properties of Metal Clusters, (Springer, Berlin, 1995)
18.Min Hu, Gregory V. Hartland,“Heat dissipation for Au particles in aqueous solution: Time versus size,”J. Phys. Chem. B, Vol. 106 pp. 7029-7033, 2002
19.Mihail Vladkov, Jean-Louis Barrat,“Modeling transient absorption and thermal conductivity in a simple nanofluid,”Nano Lett., Vol. 0, No. 0, 2006
20.Prashant K. Jain, Kyeong Seok Lee,“Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Application in biological imaging and biomedicine”J. Phys. Chem. B, Vol. 110, pp. 7238-7248, 2006
21.Plech, V. Kotaidis,“Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,”Physical Review B, Vol. 70, pp. 195423, 2004
22.Qing-Zhong Xue,“Model for effective thermal conductivity of nanofluids,”Physics Letters A, Vol. 307, pp. 313-317, 2003
23.Ravi Prasher, Prajesh Bhattacharya,“Thermal conductivity of nanoscale colloidal solution (nanofluids),”Physical Review Letters, Vol. 94, pp. 025901, 2005
24.Seok Pil Jang, Stephen U. S. Choi,“Role of Brownian motion in the enhanced thermal conductivity of nanofluids,”Applied Physics Letters, Vol. 84, No. 21, pp. 4316, 2004
25.Vladimir P. Zharov, Dmitri O. Lapotko,“Photothermal imaging of nanoparticles and cells,”IEEE Journal of Selected Topics in Quantum Eletronics, Vol. 11, No. 4, pp. 733, 2005
26.Viktor K. Pustovalov,“Thermal processes under the action of laser radiation pulse on absorbing granules in hereogeneous biotissues,” International Journal of Heat and Mass Transfer, Vol. 36, No. 2, pp. 391-399, 1993
27.Viktor K. Pustovalov, D. S. Bobuchenko,“Heating, evaporation and combustion of a solid aerosol particle in a gas exposed to optical radiation,”International Journal of Heat and Mass Transfer, Vol. 32, No. 1, pp. 3-17, 1989
28.Viktor K. Pustovalov,“Theoretical study of heating of spherical nanoparticle in media by short laser pulses,”Chemical Physics Vol. 308, pp. 103-108, 2005
29.Viktor K. Pustovalov, V. A. Babenko,“Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine,”Laser Physics Letters, Vol. 1, No. 10, pp. 516-520, 2004
30.William Evans, Jacob Fish,“Role of Brownian motion hydrodynamics on nanofluids thermal conductivity,”Applied Physics Letters, Vol. 88, pp. 093116, 2006
31.Xiaohua Huang, Prashant K. Jain,“Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of lmmunotargeted gold nanoparticles,”Photochemistry and Photobiology, Vol. 82, pp. 412-417, 2006
32.Yajie Ren, Huaqing Xie,“Effective thermal conductivity of nanofluids containing spherical nanoparticles,”J. Phys. D: Appl. Phys., Vol. 38, pp. 3958-3961, 2005
33.Yimin Xuan, Qiang Li,“Aggregation structure and thermal conductivity of nanofluids,”AIChE Journal of Thermodynamics, Vol. 49, No. 4, pp. 1038, 2003
34.Yu, S. U. S. Choi,“An effective thermal conductivity model of nanofluids with a cubical arrangement of spherical particles,”J. Nanosci. Nanotech., Vol. 5, No. 5, pp. 580, 2005
35.Zharov, R. R. Letfullin,“Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,“ Journal of Physics D:Applied Physics, Vol. 38, pp. 2571-2581, 2005
36.Zharov, Kelly E. Mercer,“Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,”Biophysical Journal, Vol. 90, pp. 619-627, 2006
37.丁勝懋,雷射工程導論,中央圖書出版社,台北,2003
38.陳正達,張平,王崇人;化學,61,161-170,2003
39.劉靜,微米奈米尺度熱傳學,五南圖書出版股份有限公司,台北,2004