| 研究生: |
楊景淳 Yang, Ching-Chun |
|---|---|
| 論文名稱: |
代謝相關因子在調控NLRP3發炎體活化的角色 The role of metabolic related factors in NLRP3 inflammasome regulation |
| 指導教授: |
蔡曜聲
Tsai, Yau-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | NLRP3發炎體 、巨噬細胞 、代謝因子 、過氧化物酶體增殖物活化受體 γ 、NAD-依賴性去乙醯化酶 1 |
| 外文關鍵詞: | NLRP3 inflammasome, Macrophages, Metabolic factor, PPARγ, SIRT1 |
| 相關次數: | 點閱:89 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
代謝副產物誘導的 NLRP3 發炎體活化的失調涉及代謝疾病例如肥胖和第 2 型糖尿病的發病機制,然而尚未有充分的研究探討代謝相關因子是否調控發炎體活化。許多代謝相關調控因子已被提出具有抗發炎的功能,例如哺乳動物雷帕黴素靶蛋白(mTOR)、缺氧誘導因子 1α(HIF-1a)、過氧化物酶體增殖物活化受體γ(PPARγ)以及 NAD-依賴性去乙醯化酶 1(sirtuin 1, SIRT1),顯示代謝及免疫系統條件間可能具有一定的相關性。然而這些調控因子是否能夠直接影響 NLPR3 發炎體的機制尚未充分探討,因此,本研究針對其中兩種代謝相關因子: PPARγ 以及 SIRT1 進一步分析兩種蛋白對於 NLRP3 發炎體直接的影響,我們在先前的研究中發現透過在 priming 訊號前後不同時間點給予此 PPARγ 以及 SIRT1 的活化劑皆能夠降低 NLRP3 發炎體活化產生的 caspase-1以及IL-1β,並利用免疫沈澱及影像分析的方式發現NLRP3發炎體與PPARγ 以及 SIRT1 的相互作用,NLRP3 透過不同結構與兩者進行相互作用後減少發炎體組裝進而降低 IL-1β的產生,透過分析進行減重手術的肥胖患者所分離出的外周血單核細胞,我們也發現 PPARγ 與 caspase-1 之間呈現負向相關性。此外,我們也發現到 PPARγ 活化劑在 PPARγ 表現低下時依然能夠抑制 NLRP3 發炎體活化。另一方面,作為去乙醯化酶,SIRT1 活化劑降低 NLRP3 發炎體活化過程中的乙醯化程度,透過質譜儀及蛋白質體分析篩選出可能的去乙醯化蛋白後仍需進一步分析。本研究發現 PPARγ以及 SIRT1 蛋白透過非依賴配體活化的方式對於 NLRP3 發炎體直接的影響之外,也提出活化劑可能透過不同的方式對於 NLRP3 發炎體進行調控,進一步將 PPARγ和 SIRT1 及兩者的活化劑調控 NLRP3 發炎體的概念得以應用到臨床上 NLRP3 發炎體相關疾病的治療。
Recent studies showed that aberrant metabolic byproducts facilitated NLRP3 inflammasome dysregulation which is involved in the pathogenesis of metabolic diseases such as obesity and type 2 diabetes. However, the detailed mechanism of how metabolic- related factors modulate NLRP3 inflammasome activation remains unclear. Since some metabolic regulators, including mechanistic target of rapamycin (mTOR), hypoxia-inducible factor 1a (HIF-1a), peroxisome proliferator-activated receptor gamma (PPARγ), and NAD- dependent deacetylase sirtuin-1 (SIRT1), were implicated to perform anti-inflammatory function, indicating the strong relationship between metabolism and inflammatory regulation. However, whether these metabolic-related factors directly target NLRP3 inflammasome is still vague. Here, our research focused on two metabolic factors, PPARγ and SIRT1, and investigated the role of these two proteins on NLRP3 inflammasome regulation. Our team previously found that both PPARγ and SIRT1 agonist, rosiglitazone and resveratrol, attenuated caspase-1 activation and IL-1β maturation triggered by NLRP3 inflammasome activator nigericin in LPS-primed mouse peritoneal macrophages. These effects were through both priming and activation signals of NLRP3 inflammasome. Moreover, co-immunoprecipitation and image analysis in mouse peritoneal macrophages and NLRP3 inflammasome-reconstituted HEK293T cells showed that NLRP3 interacted with PPARγ and SIRT1 through indicated domains. We also observed that overexpression of PPARγ and SIRT1 downregulated NLRP3 inflammasome formation. Furthermore, the negative correlation between PPARγ and caspase-1 was found in circulating mononuclear cells of obese patients after weight-loss surgery. In addition, we also determined that rosiglitazone attenuated NLRP3 inflammasome activation under a PPARγ hypomorphic condition. Since SIRT1 functions as a deacetylase, we found that resveratrol decreased acetylation level during NLRP3 inflammasome activation. The deacetylated targets of resveratrol and SIRT1 were examined by LC-MS/MS based proteomic analysis and need further investigation with other experiments. Our study demonstrated that PPARγ and SIRT1 physically interacted with NLRP3 inflammasome to interfere NLRP3 inflammasome assembly through a ligand-independent mechanism. PPARγ and SIRT1 agonism hence may be therapeutic options for targeting NLRP3-related metabolic diseases.
Abderrazak, A., Syrovets, T., Couchie, D., El Hadri, K., Friguet, B., Simmet, T., et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol, 4, 296-307. (2015). https://doi.org/10.1016/j.redox.2015.01.008
ADA. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2020. In Diabetes Care, S98-S110, (2020). https://doi.org/10.2337/dc20-S009
Aderem, E. A. M. J. V. R. A. Caspase 1 Induced Pyroptosis Cell Death. Immunological Reviews, 243, 206-214. (2011).
Alatshan, A., & Benkő, S. Nuclear Receptors as Multiple Regulators of NLRP3 Inflammasome Function. Front Immunol, 12, 630569. (2021). https://doi.org/10.3389/fimmu.2021.630569
Alvarez, Y., Rodríguez, M., Municio, C., Hugo, E., Alonso, S., Ibarrola, N., et al. Sirtuin 1 is a key regulator of the interleukin-12 p70/interleukin-23 balance in human dendritic cells. J Biol Chem, 287(42), 35689-35701. (2012). https://doi.org/10.1074/jbc.M112.391839
Aso, Y., Okumura, K., Takebayashi, K., Wakabayashi, S., & Inukai, T. Relationships of plasma interleukin-18 concentrations to hyperhomocysteinemia and carotid intimal-media wall thickness in patients with type 2 diabetes. Diabetes Care, 26(9), 2622-2627. (2003). https://doi.org/10.2337/diacare.26.9.2622
Barroso, I., Gurnell, M., Crowley, V. E., Agostini, M., Schwabe, J. W., Soos, M. A., et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature, 402(6764), 880-883. (1999). https://doi.org/10.1038/47254
Bauernfeind, F. G., Horvath, G., Stutz, A., Alnemri, E. S., MacDonald, K., Speert, D., et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol, 183(2), 787- 791. (2009). https://doi.org/10.4049/jimmunol.0901363
Bedoya, F., Sandler, L. L., & Harton, J. A. Pyrin-only protein 2 modulates NF-kappaB and disrupts ASC:CLR interactions. J Immunol, 178(6), 3837-3845. (2007). https://doi.org/10.4049/jimmunol.178.6.3837
Bergsbaken, T., Fink, S. L., & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol, 7(2), 99-109. (2009). https://doi.org/10.1038/nrmicro2070
Borra, M. T., Smith, B. C., & Denu, J. M. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem, 280(17), 17187-17195. (2005). https://doi.org/10.1074/jbc.M501250200
Brody, F., Hill, S., Celenski, S., Kar, R., Kluk, B., Pinzone, J., et al. Expression of ectonucleotide pyrophosphate phosphodiesterase and peroxisome proliferator activated receptor gamma in morbidly obese patients. Surg Endosc, 21(6), 941-944. (2007). https://doi.org/10.1007/s00464-006-9098-3
Broz, P., & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol, 16(7), 407-420. (2016). https://doi.org/10.1038/nri.2016.58
Broz, P., & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nature reviews. Immunology, 16, 407-420. (2016). https://doi.org/10.1038/nri.2016.58
Bruchard, M., Mignot, G., Derangère, V., Chalmin, F., Chevriaux, A., Végran, F., et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med, 19(1), 57-64. (2013). https://doi.org/10.1038/nm.2999
Brust, R., Lin, H., Fuhrmann, J., Asteian, A., Kamenecka, T. M., & Kojetin, D. J. Modification of the Orthosteric PPARγ Covalent Antagonist Scaffold Yields an Improved Dual-Site Allosteric Inhibitor. ACS Chem Biol, 12(4), 969-978. (2017). https://doi.org/10.1021/acschembio.6b01015
Capiralla, H., Vingtdeux, V., Zhao, H., Sankowski, R., Al-Abed, Y., Davies, P., et al. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem, 120(3), 461-472. (2012). https://doi.org/10.1111/j.1471-4159.2011.07594.x
Carlsson, F., Kim, J., Dumitru, C., Barck, K. H., Carano, R. A., Sun, M., et al. Host- detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog, 6(5), e1000895. (2010). https://doi.org/10.1371/journal.ppat.1000895
Cassel, S. L., & Sutterwala, F. S. Sterile inflammatory responses mediated by the NLRP3 inflammasome. Eur J Immunol, 40(3), 607-611. (2010). https://doi.org/10.1002/eji.200940207
Chalkiadaki, A., & Guarente, L. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab, 16(2), 180-188. (2012). https://doi.org/10.1016/j.cmet.2012.07.003
Chang, C. H., Lee, C. Y., Lu, C. C., Tsai, F. J., Hsu, Y. M., Tsao, J. W., et al. Resveratrol- induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int J Oncol, 50(3), 873-882. (2017). https://doi.org/10.3892/ijo.2017.3866
Chang, H. C., & Guarente, L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab, 25(3), 138-145. (2014). https://doi.org/10.1016/j.tem.2013.12.001
Chang, Y. P., Ka, S. M., Hsu, W. H., Chen, A., Chao, L. K., Lin, C. C., et al. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J Cell Physiol, 230(7), 1567-1579. (2015). https://doi.org/10.1002/jcp.24903
Chen, J., & Chen, Z. J. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature, 564(7734), 71-76. (2018). https://doi.org/10.1038/s41586-018-0761-3
Chen, K., Li, J., Wang, J., Xia, Y., Dai, W., Wang, F., et al. 15-Deoxy- γ 12,14-prostaglandin J2 Reduces Liver Impairment in a Model of ConA-Induced Acute Hepatic Inflammation by Activation of PPAR γ and Reduction in NF- κ B Activity. PPAR Res, 2014, 215631. (2014). https://doi.org/10.1155/2014/215631
Christofides, A., Konstantinidou, E., Jani, C., & Boussiotis, V. A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism, 114, 154338. (2021). https://doi.org/10.1016/j.metabol.2020.154338
Chuang, Y. T., Lin, Y. C., Lin, K. H., Chou, T. F., Kuo, W. C., Yang, K. T., et al. Tumor suppressor death-associated protein kinase is required for full IL-1beta production. Blood, 117(3), 960-970. (2011). https://doi.org/10.1182/blood-2010-08-303115
Claycombe-Larson, K. J., Alvine, T., Wu, D., Kalupahana, N. S., Moustaid-Moussa, N., & Roemmich, J. N. Nutrients and Immunometabolism: Role of Macrophage NLRP3. J Nutr, 150(7), 1693-1704. (2020). https://doi.org/10.1093/jn/nxaa085
Coll, R. C., Robertson, A. A., Chae, J. J., Higgins, S. C., Muñoz-Planillo, R., Inserra, M. C., et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med, 21(3), 248-255. (2015). https://doi.org/10.1038/nm.3806
Csak, T., Ganz, M., Pespisa, J., Kodys, K., Dolganiuc, A., & Szabo, G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology, 54(1), 133-144. (2011). https://doi.org/10.1002/hep.24341
Da-Chun, L. Interplay between PPARγ and inflammasome activation in macrophages National Cheng Kung University]. Tainan. (2013). https://hdl.handle.net/11296/867qcp
Davenport, A. M., Huber, F. M., & Hoelz, A. Structural and functional analysis of human SIRT1. J Mol Biol, 426(3), 526-541. (2014). https://doi.org/10.1016/j.jmb.2013.10.009
de Sá Coutinho, D., Pacheco, M. T., Frozza, R. L., & Bernardi, A. Anti-Inflammatory Effects of Resveratrol: Mechanistic Insights. Int J Mol Sci, 19(6). (2018). https://doi.org/10.3390/ijms19061812
Dinarello, C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, 117(14), 3720-3732. (2011). https://doi.org/10.1182/blood-2010-07-273417
Dinarello, C. A., Novick, D., Kim, S., & Kaplanski, G. Interleukin-18 and IL-18 binding protein. Front Immunol, 4, 289. (2013). https://doi.org/10.3389/fimmu.2013.00289
Dong, W., Wang, X., Bi, S., Pan, Z., Liu, S., Yu, H., et al. Inhibitory effects of resveratrol on foam cell formation are mediated through monocyte chemotactic protein-1 and lipid metabolism-related proteins. Int J Mol Med, 33(5), 1161-1168. (2014). https://doi.org/10.3892/ijmm.2014.1680
Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 464(7293), 1357-1361. (2010). https://doi.org/10.1038/nature08938
Duez, H., & Pourcet, B. Nuclear Receptors in the Control of the NLRP3 Inflammasome Pathway. Front Endocrinol (Lausanne), 12, 630536. (2021). https://doi.org/10.3389/fendo.2021.630536
Duncan, J. A., Bergstralh, D. T., Wang, Y., Willingham, S. B., Ye, Z., Zimmermann, A. G., et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. PNAS, 104, 8041-8046. (2007).
Espinola-Klein, C., Rupprecht, H. J., Bickel, C., Lackner, K., Genth-Zotz, S., Post, F., et al. Impact of inflammatory markers on cardiovascular mortality in patients with metabolic syndrome. Eur J Cardiovasc Prev Rehabil, 15(3), 278-284. (2008). https://doi.org/10.1097/HJR.0b013e3282f37a6e
Feve, B., & Bastard, J. P. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol, 5(6), 305-311. (2009). https://doi.org/10.1038/nrendo.2009.62
Fink, C., Gaudet, J. M., Fox, M. S., Bhatt, S., Viswanathan, S., Smith, M., et al. (19)F- perfluorocarbon-labeled human peripheral blood mononuclear cells can be detected in vivo using clinical MRI parameters in a therapeutic cell setting. Sci Rep, 8(1), 590. (2018). https://doi.org/10.1038/s41598-017-19031-0
Fischer, C. P., Perstrup, L. B., Berntsen, A., Eskildsen, P., & Pedersen, B. K. Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans. Clin Immunol, 117(2), 152-160. (2005). https://doi.org/10.1016/j.clim.2005.07.008
Franchi, L., Warner, N., Viani, K., & Nunez, G. Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev, 227(1), 106-128. (2009). https://doi.org/10.1111/j.1600-065X.2008.00734.x
Fu, Y., Wang, Y., Du, L., Xu, C., Cao, J., Fan, T., et al. Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation. Int J Mol Sci, 14(7), 14105-14118. (2013). https://doi.org/10.3390/ijms140714105
Gamsjaeger, R., Liew, C. K., Loughlin, F. E., Crossley, M., & Mackay, J. P. Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci, 32(2), 63-70. (2007). https://doi.org/10.1016/j.tibs.2006.12.007
Ghisays, F., Brace, C. S., Yackly, S. M., Kwon, H. J., Mills, K. F., Kashentseva, E., et al. The N-Terminal Domain of SIRT1 Is a Positive Regulator of Endogenous SIRT1-Dependent Deacetylation and Transcriptional Outputs. Cell Rep, 10(10), 1665-1673. (2015). https://doi.org/10.1016/j.celrep.2015.02.036
Giusti, V., Verdumo, C., Suter, M., Gaillard, R. C., Burckhardt, P., & Pralong, F. Expression of peroxisome proliferator-activated receptor-gamma1 and peroxisome proliferator- activated receptor-gamma2 in visceral and subcutaneous adipose tissue of obese women. Diabetes, 52(7), 1673-1676. (2003). https://doi.org/10.2337/diabetes.52.7.1673
Glass, C. K., & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol, 10(5), 365-376. (2010). https://doi.org/10.1038/nri2748
Gosset, P., Charbonnier, A. S., Delerive, P., Fontaine, J., Staels, B., Pestel, J., et al. Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells. Eur J Immunol, 31(10), 2857-2865. (2001). https://doi.org/10.1002/1521-4141(2001010)31:10<2857::aid-immu2857>3.0.co;2-x
Guilherme, A., Tesz, G. J., Guntur, K. V., & Czech, M. P. Tumor necrosis factor-alpha induces caspase-mediated cleavage of peroxisome proliferator-activated receptor gamma in adipocytes. J Biol Chem, 284(25), 17082-17091. (2009). https://doi.org/10.1074/jbc.M809042200
Guo, H., Callaway, J. B., & Ting, J. P. Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nature Medicine, 21, 677-687. (2015). https://doi.org/10.1038/nm.3893
Han, C. Y., Rho, H. S., Kim, A., Kim, T. H., Jang, K., Jun, D. W., et al. FXR Inhibits Endoplasmic Reticulum Stress-Induced NLRP3 Inflammasome in Hepatocytes and Ameliorates Liver Injury. Cell Rep, 24(11), 2985-2999. (2018). https://doi.org/10.1016/j.celrep.2018.07.068
Harrell, C. R., Markovic, B. S., Fellabaum, C., Arsenijevic, N., Djonov, V., & Volarevic, V. The role of Interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration. Biofactors, 46(2), 263-275. (2020). https://doi.org/10.1002/biof.1587
He, H., Jiang, H., Chen, Y., Ye, J., Wang, A., Wang, C., et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun, 9(1), 2550. (2018). https://doi.org/10.1038/s41467-018-04947-6
He, M., Chiang, H. H., Luo, H., Zheng, Z., Qiao, Q., Wang, L., et al. An Acetylation Switch of the NLRP3 Inflammasome Regulates Aging-Associated Chronic Inflammation and Insulin Resistance. Cell Metab, 31(3), 580-591.e585. (2020). https://doi.org/10.1016/j.cmet.2020.01.009
He, Y., Varadarajan, S., Munoz-Planillo, R., Burberry, A., Nakamura, Y., & Nunez, G. 3,4- 66 methylenedioxy-beta-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J Biol Chem, 289(2), 1142-1150. (2014). https://doi.org/10.1074/jbc.M113.515080
He, Y., Zeng, M. Y., Yang, D., Motro, B., & Núñez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature, 530(7590), 354-357. (2016). https://doi.org/10.1038/nature16959
He, Y., Zeng, M. Y., Yang, D., Motro, B., & Nunez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature, 530(7590), 354-357. (2016). https://doi.org/10.1038/nature16959
Hornung, V., Bauernfeind, F., Halle, A., Samstad, E. O., Kono, H., Rock, K. L., et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology, 9, 847-856. (2008). https://doi.org/10.1038/ni.1631
Hotamisligil, G. S. Inflammation and metabolic disorders. Nature, 444(7121), 860-867. (2006). https://doi.org/10.1038/nature05485
Hou, X., Rooklin, D., Fang, H., & Zhang, Y. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Sci Rep, 6, 38186. (2016). https://doi.org/10.1038/srep38186
Huang, J. T., Welch, J. S., Ricote, M., Binder, C. J., Willson, T. M., Kelly, C., et al. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15- lipoxygenase. Nature, 400(6742), 378-382. (1999). https://doi.org/10.1038/22572
Huang, Y., Jiang, H., Chen, Y., Wang, X., Yang, Y., Tao, J., et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med, 10(4). (2018). https://doi.org/10.15252/emmm.201708689
Hwang, I., Lee, E., Jeon, S. A., & Yu, J. W. Histone deacetylase 6 negatively regulates NLRP3 inflammasome activation. Biochem Biophys Res Commun, 467(4), 973-978. (2015). https://doi.org/10.1016/j.bbrc.2015.10.033
Iyer, S. S., He, Q., Janczy, J. R., Elliott, E. I., Zhong, Z., Olivier, A. K., et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity, 39(2), 311-323. (2013). https://doi.org/10.1016/j.immuni.2013.08.001
Jager, J., Gremeaux, T., Cormont, M., Le Marchand-Brustel, Y., & Tanti, J. F. Interleukin- 1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology, 148(1), 241-251. (2007). https://doi.org/10.1210/en.2006-0692
Jiang, C., Ting, A. T., & Seed, B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature, 391(6662), 82-86. (1998). https://doi.org/10.1038/34184
Jiang, H., He, H., Chen, Y., Huang, W., Cheng, J., Ye, J., et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med, 214(11), 3219-3238. (2017). https://doi.org/10.1084/jem.20171419
Jiang, L., Zhang, L., Kang, K., Fei, D., Gong, R., Cao, Y., et al. Resveratrol ameliorates LPS- induced acute lung injury via NLRP3 inflammasome modulation. Biomed Pharmacother, 84, 130-138. (2016). https://doi.org/10.1016/j.biopha.2016.09.020
Juliana, C., Fernandes-Alnemri, T., Kang, S., Farias, A., Qin, F., & Alnemri, E. S. Non- transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem, 287(43), 36617-36622. (2012). https://doi.org/10.1074/jbc.M112.407130
Jürgen M. Lehmann, L. B. M., Tracey A. Smith-Oliver, William O. Wilkison, Timothy M. Willson, Steven A. Kliewer. An Antidiabetic Thiazolidinedione Is a High Affinity Ligand for Peroxisome Proliferator-activated Receptor γ (PPARγ). J Biol Chem., 270(22), 12953-12956. (1995).
Kang, H., Suh, J. Y., Jung, Y. S., Jung, J. W., Kim, M. K., & Chung, J. H. Peptide switch is essential for Sirt1 deacetylase activity. Mol Cell, 44(2), 203-213. (2011). https://doi.org/10.1016/j.molcel.2011.07.038
Klug, A. Zinc finger peptides for the regulation of gene expression. J. Mol. Biol., 293, 215- 218. (1999).
Latz, E. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol, 22(1), 28-33. (2010). https://doi.org/10.1016/j.coi.2009.12.004
Latz, E., Xiao, T. S., & Stutz, A. Activation and regulation of the inflammasomes. Nat Rev Immunol, 13(6), 397-411. (2013). https://doi.org/10.1038/nri3452
Lechtenberg, B. C., Mace, P. D., & Riedl, S. J. Structural mechanisms in NLR inflammasome signaling. Curr Opin Struct Biol, 29, 17-25. (2014). https://doi.org/10.1016/j.sbi.2014.08.011
Lee, J. W., Nam-Goong, I. S., Kim, J. G., Yun, C. H., Kim, S. J., Choi, J. I., et al. Effects of rosiglitazone on inflammation in Otsuka long-evans Tokushima Fatty rats. Korean Diabetes J, 34(3), 191-199. (2010). https://doi.org/10.4093/kdj.2010.34.3.191
Lefevre, L., Gales, A., Olagnier, D., Bernad, J., Perez, L., Burcelin, R., et al. PPARgamma ligands switched high fat diet-induced macrophage M2b polarization toward M2a thereby improving intestinal Candida elimination. PLoS One, 5(9), e12828. (2010). https://doi.org/10.1371/journal.pone.0012828
Li, Y., Wang, P., Yang, X., Wang, W., Zhang, J., He, Y., et al. SIRT1 inhibits inflammatory response partly through regulation of NLRP3 inflammasome in vascular endothelial cells. Mol Immunol, 77, 148-156. (2016). https://doi.org/10.1016/j.molimm.2016.07.018
Li, Y., Yang, X., He, Y., Wang, W., Zhang, J., Zhang, W., et al. Negative regulation of NLRP3 inflammasome by SIRT1 in vascular endothelial cells. Immunobiology, 222(3), 552-561. (2017). https://doi.org/10.1016/j.imbio.2016.11.002
Lin, C., Chao, H., Li, Z., Xu, X., Liu, Y., Bao, Z., et al. Omega-3 fatty acids regulate NLRP3 inflammasome activation and prevent behavior deficits after traumatic brain injury. Exp Neurol, 290, 115-122. (2017). https://doi.org/10.1016/j.expneurol.2017.01.005
Lin, D. C. Interplay between PPARγ and inflammasome activation in macrophages National Cheng Kung University]. Tainan. (2013). https://hdl.handle.net/11296/867qcp
Liu, P., Huang, G., Wei, T., Gao, J., Huang, C., Sun, M., et al. Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis, 1864(3), 764-777. (2018). https://doi.org/10.1016/j.bbadis.2017.12.027
Liu, T. F., Vachharajani, V. T., Yoza, B. K., & McCall, C. E. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J Biol Chem, 287(31), 25758-25769. (2012). https://doi.org/10.1074/jbc.M112.362343
MacDonald, J. A., Wijekoon, C. P., Liao, K. C., & Muruve, D. A. Biochemical and structural aspects of the ATP-binding domain in inflammasome-forming human NLRP proteins. IUBMB Life, 65(10), 851-862. (2013). https://doi.org/10.1002/iub.1210
Magupalli, V. G., Negro, R., Tian, Y., Hauenstein, A. V., Di Caprio, G., Skillern, W., et al. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science, 369(6510). (2020). https://doi.org/10.1126/science.aas8995
Mangan, M. S. J., Olhava, E. J., Roush, W. R., Seidel, H. M., Glick, G. D., & Latz, E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov, 17(8), 588-606. (2018). https://doi.org/10.1038/nrd.2018.97
Marchetti, C., Swartzwelter, B., Gamboni, F., Neff, C. P., Richter, K., Azam, T., et al. OLT1177, a beta-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci U S A, 115(7), E1530-E1539. (2018a). https://doi.org/10.1073/pnas.1716095115
Marchetti, C., Swartzwelter, B., Gamboni, F., Neff, C. P., Richter, K., Azam, T., et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci U S A, 115(7), E1530- e1539. (2018b). https://doi.org/10.1073/pnas.1716095115
Martine, P., Chevriaux, A., Derangère, V., Apetoh, L., Garrido, C., Ghiringhelli, F., et al. HSP70 is a negative regulator of NLRP3 inflammasome activation. Cell Death Dis, 10(4), 256. (2019). https://doi.org/10.1038/s41419-019-1491-7
Martinon, F. Signaling by ROS drives inflammasome activation. European Journal of Immunology, 40, 616-619. (2010). https://doi.org/10.1002/eji.200940168
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A., & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 440(7081), 237-241. (2006). https://doi.org/10.1038/nature04516
Masters, S. L., Dunne, A., Subramanian, S. L., Hull, R. L., Tannahill, G. M., Sharp, F. A., et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol, 11(10), 897-904. (2010). https://doi.org/10.1038/ni.1935
Mayor, A., Martinon, F., De Smedt, T., Petrilli, V., & Tschopp, J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol, 8(5), 497-503. (2007). https://doi.org/10.1038/ni1459
McGettrick, A. F., & O'Neill, L. A. How metabolism generates signals during innate immunity and inflammation. J Biol Chem, 288(32), 22893-22898. (2013). https://doi.org/10.1074/jbc.R113.486464
McInerney, E. M., Rose, D. W., Flynn, S. E., Westin, S., Mullen, T. M., Krones, A., et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev, 12(21), 3357-3368. (1998). https://doi.org/10.1101/gad.12.21.3357
Meng, Q. Q., Feng, Z. C., Zhang, X. L., Hu, L. Q., Wang, M., Zhang, H. F., et al. PPAR- gamma Activation Exerts an Anti-inflammatory Effect by Suppressing the NLRP3 Inflammasome in Spinal Cord-Derived Neurons. Mediators Inflamm, 2019, 6386729. (2019). https://doi.org/10.1155/2019/6386729
Misawa, T., Takahama, M., Kozaki, T., Lee, H., Zou, J., Saitoh, T., et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol, 14(5), 454-460. (2013). https://doi.org/10.1038/ni.2550
Mongioì, L. M., La Vignera, S., Cannarella, R., Cimino, L., Compagnone, M., Condorelli, R. A., et al. The Role of Resveratrol Administration in Human Obesity. Int J Mol Sci, 22(9). (2021). https://doi.org/10.3390/ijms22094362
Moon, J. S., Hisata, S., Park, M. A., DeNicola, G. M., Ryter, S. W., Nakahira, K., et al. mTORC1-Induced HK1-Dependent Glycolysis Regulates NLRP3 Inflammasome Activation. Cell Rep, 12(1), 102-115. (2015). https://doi.org/10.1016/j.celrep.2015.05.046
Murakami, T., Ruengsinpinya, L., Nakamura, E., Takahata, Y., Hata, K., Okae, H., et al. Cutting Edge: G Protein Subunit β 1 Negatively Regulates NLRP3 Inflammasome Activation. J Immunol, 202(7), 1942-1947. (2019). https://doi.org/10.4049/jimmunol.1801388
Necela, B. M., Su, W., & Thompson, E. A. Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor gamma and nuclear factor-kappaB in macrophages. Immunology, 125(3), 344-358. (2008). https://doi.org/10.1111/j.1365- 2567.2008.02849.x
Netea, M. G., Joosten, L. A., Lewis, E., Jensen, D. R., Voshol, P. J., Kullberg, B. J., et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat Med, 12(6), 650-656. (2006). https://doi.org/10.1038/nm1415
Niu, Z., Shi, Q., Zhang, W., Shu, Y., Yang, N., Chen, B., et al. Caspase-1 cleaves PPARgamma for potentiating the pro-tumor action of TAMs. Nat Commun, 8(1), 766. (2017). https://doi.org/10.1038/s41467-017-00523-6
O'Neill, L. A., & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo- starvation. Nature, 493(7432), 346-355. (2013). https://doi.org/10.1038/nature11862
O'Neill, L. A., Kishton, R. J., & Rathmell, J. A guide to immunometabolism for immunologists. Nat Rev Immunol, 16(9), 553-565. (2016). https://doi.org/10.1038/nri.2016.70
Odegaard, J. I., Ricardo-Gonzalez, R. R., Goforth, M. H., Morel, C. R., Subramanian, V., Mukundan, L., et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature, 447(7148), 1116-1120. (2007). https://doi.org/10.1038/nature05894
Park, S. J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell, 148(3), 421-433. (2012). https://doi.org/10.1016/j.cell.2012.01.017
Pascual, G., Fong, A. L., Ogawa, S., Gamliel, A., Li, A. C., Perissi, V., et al. A SUMOylation- dependent pathway mediates transrepression of inflammatory response genes by PPAR- gamma. Nature, 437(7059), 759-763. (2005). https://doi.org/10.1038/nature03988
Pelegrin, P., & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO Journal, 25, 5071-5082. (2006). https://doi.org/10.1038/sj.emboj.7601378
Pelegrin, P., & Surprenant, A. Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1β release through a dye uptake-independent pathway. Journal of Biological Chemistry, 282, 2386-2394. (2007). https://doi.org/10.1074/jbc.M610351200
Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 429(6993), 771-776. (2004). https://doi.org/10.1038/nature02583
Proell, M., Riedl, S. J., Fritz, J. H., Rojas, A. M., & Schwarzenbacher, R. The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS One, 3(4), e2119. (2008). https://doi.org/10.1371/journal.pone.0002119
Puren, A. J., Fantuzzi, G., & Dinarello, C. A. Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci U S A, 96(5), 2256-2261. (1999). https://doi.org/10.1073/pnas.96.5.2256
Py, B. F., Kim, M. S., Vakifahmetoglu-Norberg, H., & Yuan, J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell, 49(2), 331-338. (2013). https://doi.org/10.1016/j.molcel.2012.11.009
Rahman, M. M., Mohamed, M. R., Kim, M., Smallwood, S., & McFadden, G. Co-regulation of NF-kappaB and inflammasome-mediated inflammatory responses by myxoma virus pyrin domain-containing protein M013. PLoS Pathog, 5(10), e1000635. (2009). https://doi.org/10.1371/journal.ppat.1000635
Ray, A., & Dittel, B. N. Isolation of mouse peritoneal cavity cells. J Vis Exp, 35, e1488. (2010). https://doi.org/10.3791/1488
Rex, D. A. B., Agarwal, N., Prasad, T. S. K., Kandasamy, R. K., Subbannayya, Y., & Pinto, S. M. A comprehensive pathway map of IL-18-mediated signalling. J Cell Commun Signal, 14(2), 257-266. (2020). https://doi.org/10.1007/s12079-019-00544-4
Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., & Glass, C. K. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 391(6662), 79-82. (1998). https://doi.org/10.1038/34178
Robbins, G. R., Wen, H., & Ting, J. P. Inflammasomes and metabolic disorders: old genes in modern diseases. Mol Cell, 54(2), 297-308. (2014). https://doi.org/10.1016/j.molcel.2014.03.029
Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M., & Puigserver, P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029), 113-118. (2005). https://doi.org/10.1038/nature03354
Schug, T. T., Xu, Q., Gao, H., Peres-da-Silva, A., Draper, D. W., Fessler, M. B., et al. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol Cell Biol, 30(19), 4712-4721. (2010). https://doi.org/10.1128/mcb.00657-10
Seok, J. K., Kang, H. C., Cho, Y. Y., Lee, H. S., & Lee, J. Y. Regulation of the NLRP3 Inflammasome by Post-Translational Modifications and Small Molecules. Front Immunol, 11, 618231. (2020). https://doi.org/10.3389/fimmu.2020.618231
Shaito, A., Posadino, A. M., Younes, N., Hasan, H., Halabi, S., Alhababi, D., et al. Potential Adverse Effects of Resveratrol: A Literature Review. Int J Mol Sci, 21(6). (2020). https://doi.org/10.3390/ijms21062084
Shenoy, A. R., Wellington, D. A., Kumar, P., Kassa, H., Booth, C. J., Cresswell, P., et al. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science, 336(6080), 481-485. (2012). https://doi.org/10.1126/science.1217141
Shi, H., Wang, Y., Li, X., Zhan, X., Tang, M., Fina, M., et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol, 17(3), 250-258. (2016). https://doi.org/10.1038/ni.3333
Song, H., Liu, B., Huai, W., Yu, Z., Wang, W., Zhao, J., et al. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat Commun, 7, 13727. (2016). https://doi.org/10.1038/ncomms13727
Stehlik, C., & Dorfleutner, A. COPs and POPs: modulators of inflammasome activity. J Immunol, 179(12), 7993-7998. (2007). https://doi.org/10.4049/jimmunol.179.12.7993
Straus, D. S., & Glass, C. K. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol, 28(12), 551-558. (2007). https://doi.org/10.1016/j.it.2007.09.003
Strowig, T., Henao-Mejia, J., Elinav, E., & Flavell, R. Inflammasomes in health and disease. Nature, 481(7381), 278-286. (2012). https://doi.org/10.1038/nature10759
Swanson, K. V., Deng, M., & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol, 19(8), 477-489. (2019). https://doi.org/10.1038/s41577-019-0165-0
Tai, H. C., Tsai, P. J., Chen, J. Y., Lai, C. H., Wang, K. C., Teng, S. H., et al. Peroxisome Proliferator-Activated Receptor gamma Level Contributes to Structural Integrity and Component Production of Elastic Fibers in the Aorta. Hypertension, 67(6), 1298-1308. (2016). https://doi.org/10.1161/HYPERTENSIONAHA.116.07367
Thorand, B., Kolb, H., Baumert, J., Koenig, W., Chambless, L., Meisinger, C., et al. Elevated levels of interleukin-18 predict the development of type 2 diabetes: results from the MONICA/KORA Augsburg Study, 1984-2002. Diabetes, 54(10), 2932-2938. (2005). https://doi.org/10.2337/diabetes.54.10.2932
Timothy M. Willson, M. H. L., Steven A. Kliewer. PEROXISOME PROLIFERATOR– ACTIVATED RECEPTOR γ AND METABOLIC DISEASE. Annu. Rev. Biochem., 70, 341- 367. (2001).
Tontonoz, P., & Spiegelman, B. M. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem, 77, 289-312. (2008). https://doi.org/10.1146/annurev.biochem.77.061307.091829
Tsai, Y. S., Kim, H. J., Takahashi, N., Kim, H. S., Hagaman, J. R., Kim, J. K., et al. Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARgamma. J Clin Invest, 114(2), 240-249. (2004). https://doi.org/10.1172/jci20964
Tsai, Y. S., Tsai, P. J., Jiang, M. J., Chou, T. Y., Pendse, A., Kim, H. S., et al. Decreased PPAR gamma expression compromises perigonadal-specific fat deposition and insulin sensitivity. Mol Endocrinol, 23(11), 1787-1798. (2009). https://doi.org/10.1210/me.2009-0073
Vachharajani, V. T., Liu, T., Wang, X., Hoth, J. J., Yoza, B. K., & McCall, C. E. Sirtuins Link Inflammation and Metabolism. J Immunol Res, 2016, 8167273. (2016). https://doi.org/10.1155/2016/8167273
Vandanmagsar, B., Youm, Y. H., Ravussin, A., Galgani, J. E., Stadler, K., Mynatt, R. L., et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med, 17(2), 179-188. (2011). https://doi.org/10.1038/nm.2279
Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 107(2), 149-159. (2001). https://doi.org/10.1016/s0092-8674(01)00527-x
Wang, W., Xiao, F., Wan, P., Pan, P., Zhang, Y., Liu, F., et al. EV71 3D Protein Binds with NLRP3 and Enhances the Assembly of Inflammasome Complex. PLoS Pathog, 13(1), e1006123. (2017). https://doi.org/10.1371/journal.ppat.1006123
Wang, X. L., Li, T., Li, J. H., Miao, S. Y., & Xiao, X. Z. The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease. Molecules, 22(9). (2017). https://doi.org/10.3390/molecules22091529
Wang, Y., Yu, B., Wang, L., Yang, M., Xia, Z., Wei, W., et al. Pioglitazone ameliorates glomerular NLRP3 inflammasome activation in apolipoprotein E knockout mice with diabetes mellitus. PLoS One, 12(7), e0181248. (2017). https://doi.org/10.1371/journal.pone.0181248
Weber, A. N. R., Bittner, Z. A., Shankar, S., Liu, X., Chang, T. H., Jin, T., et al. Recent insights into the regulatory networks of NLRP3 inflammasome activation. J Cell Sci, 133(23). (2020). https://doi.org/10.1242/jcs.248344
Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M. T., et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol, 12(5), 408- 415. (2011). https://doi.org/10.1038/ni.2022
Whittle, J. R., Powell, M. J., Popov, V. M., Shirley, L. A., Wang, C., & Pestell, R. G. Sirtuins, nuclear hormone receptor acetylation and transcriptional regulation. Trends Endocrinol Metab, 18(9), 356-364. (2007). https://doi.org/10.1016/j.tem.2007.07.007
Yang, C. S., Kim, J. J., Kim, T. S., Lee, P. Y., Kim, S. Y., Lee, H. M., et al. Small heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome. Nat Commun, 6, 6115. (2015). https://doi.org/10.1038/ncomms7115
Yang, J., Liu, Z., & Xiao, T. S. Post-translational regulation of inflammasomes. Cell Mol Immunol, 14(1), 65-79. (2017). https://doi.org/10.1038/cmi.2016.29
Yang, S. R., Hsu, W. H., Wu, C. Y., Shang, H. S., Liu, F. C., Chen, A., et al. Accelerated, severe lupus nephritis benefits from treatment with honokiol by immunoregulation and differentially regulating NF-κB/NLRP3 inflammasome and sirtuin 1/autophagy axis. Faseb j, 34(10), 13284-13299. (2020). https://doi.org/10.1096/fj.202001326R
Yang, Y., Wang, H., Kouadir, M., Song, H., & Shi, F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis, 10(2), 128. (2019). https://doi.org/10.1038/s41419-019-1413-8
Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A., et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. Embo j, 23(12), 2369-2380. (2004). https://doi.org/10.1038/sj.emboj.7600244
Yi-Ling, T. Interaction between SIRT1 and NLRP3 inflammasome activation National Cheng Kung University]. Tainan. (2016). https://hdl.handle.net/11296/8mk3ed
Yoshizaki, T., Milne, J. C., Imamura, T., Schenk, S., Sonoda, N., Babendure, J. L., et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol, 29(5), 1363-1374. (2009). https://doi.org/10.1128/mcb.00705-08
Yu, M., Zhang, H., Wang, B., Zhang, Y., Zheng, X., Shao, B., et al. Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells, 10(3). (2021). https://doi.org/10.3390/cells10030660
Yu, Q., Dong, L., Li, Y., & Liu, G. SIRT1 and HIF1α signaling in metabolism and immune responses. Cancer Lett, 418, 20-26. (2018). https://doi.org/10.1016/j.canlet.2017.12.035
Yu-Ting, T. The role of SIRT1 in NLRP3 inflammasome activation National Cheng Kung University]. Tainan. (2014). https://hdl.handle.net/11296/35e69k
Zhang, B., Xu, D., She, L., Wang, Z., Yang, N., Sun, R., et al. Silybin inhibits NLRP3 inflammasome assembly through the NAD(+)/SIRT2 pathway in mice with nonalcoholic fatty liver disease. Faseb j, 32(2), 757-767. (2018). https://doi.org/10.1096/fj.201700602R
Zhang, X., Wu, Q., Zhang, Q., Lu, Y., Liu, J., Li, W., et al. Resveratrol Attenuates Early Brain Injury after Experimental Subarachnoid Hemorrhage via Inhibition of NLRP3 Inflammasome Activation. Front Neurosci, 11, 611. (2017). https://doi.org/10.3389/fnins.2017.00611
Zhang, Z., Meszaros, G., He, W. T., Xu, Y., de Fatima Magliarelli, H., Mailly, L., et al. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J Exp Med, 214(9), 2671-2693. (2017). https://doi.org/10.1084/jem.20162040
Zhou, R., Tardivel, A., Thorens, B., Choi, I., & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol, 11(2), 136-140. (2010). https://doi.org/10.1038/ni.1831
校內:2026-07-12公開