| 研究生: |
王益昌 Wang, I-Chang |
|---|---|
| 論文名稱: |
磷酸鈣骨水泥結構、性質及
伽瑪射線對性質之影響 Structure、properties and the effect of gamma-ray radiation of calcium phosphate cement |
| 指導教授: |
朱建平
Ju, Chien-Ping 陳瑾惠 Chern Lin, Jiin-Huey |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 伽瑪射線 、消毒 、穿透式電子顯微鏡 、磷酸鈣骨水泥 |
| 外文關鍵詞: | sterilization, gamma-ray, transmission electron microscopy, calcium phosphate cement |
| 相關次數: | 點閱:157 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於鈣磷系骨水泥(CPC)具有優異的生物相容性及引骨性,因此在牙科及外科手術上常用來當作填充修補材料。以四鈣磷酸鹽(TTCP)/ 二鈣磷酸鹽(DCPA)為主要成分的鈣磷系骨水泥的硬化機制一般認為與磷灰石(apatite)的生成有關,為了瞭解反應過程中鬚晶或針狀結晶(whiskers or needle-like crystals)的生成對於硬化機制之影響且避免分析上的困難,本實驗使用單一成分四鈣磷酸鹽粉末為原料,並使用磷酸氫二銨(diammonium hydrogen phosphate,(NH4)2HPO4)鹼性溶液來作為處理鬚晶成長的溶液,在不同的鬚晶前處理時間觀察其微結構的變化。
實驗結果發現隨著四鈣磷酸鹽表面鬚晶處理時間的增加,鬚晶型態從細小球狀逐漸成長為細長型鬚晶,且鬚晶的長度及寬度亦逐漸增加,因此我們提出在此鈣磷系骨水泥實驗中長度增加速度較寬度快,鬚晶的相則由初期的非晶質結構逐漸轉變成四鈣磷酸鹽晶格結構,最後變成磷灰石的晶格結構。而抗壓強度隨著初期鬚晶的成長(低於10 分鐘處理)而略微增加,但當鬚晶結構開始變成磷灰石相(30 分鐘處理)時,強度亦下降,直到以磷灰石相為主時強度降至最低。
經過表面處理的四鈣磷酸鹽亦做細胞培養及動物植入實驗以評估其生物相容性。實驗結果顯示該材料無細胞毒性,並於兔子植入後之組織切片觀察結果亦顯示出對植入材周圍的組織無不良影響且有良好的鍵結,顯示表面處理不影響其生物相容性。
本研究另一方面探討四鈣磷酸鹽/二鈣磷酸鹽鈣磷系骨水泥經不同γ-ray 照射劑量消毒滅菌後,對其機械性質,包括操作時間、硬化時間及抗壓強度的影響。實驗結果發現,當γ-ray 劑量強度到達30 kGy 時,4操作時間及硬化時間均會變長,且抗壓強度為最高,經過氫氧基磷灰石(HA)生成率的計算結果亦發現,四鈣磷酸鹽/二鈣磷酸鹽鈣磷系骨水泥經30 kGy γ-ray 劑量強度消毒滅菌後,其氫氧基磷灰石生成率為最高。SEM 觀察微結構的結果亦顯示出隨著γ-ray 劑量強度的增加,其微結構亦由花瓣型(sharp-edged petal-like morphology)結構(10 kGy)變成圓柱型(globular-like morphology)(30 kGy),到80 kGy 時變成以珊瑚型(dull-edged coralline-like morphology)為主要的結構。
Due to its superior biocompatibility and osteoconductivity, calcium phosphate cement (CPC) has been suggested for use as a filling material in dental and orthopedic applications. It is generally accepted that the setting mechanism of TTCP/DCPA (dicalcium phosphate anhydrous, CaHPO4) -
based CPC involves formation of apatite crystals. To eliminate such complications and single out the effect of whisker treatment on TTCP in basic solution, the present study investigates the changes in microstructure and microchemistry during whisker formation on the surface of a monolithic TTCP powder in a basic phosphoric acid solution using TEM technique.
The results are as whisker-treating time increased, the whiskers continued to grow in length and width. The initial structure of whisker is amorphous and becomes non-stoichiometric TTCP in ten min treated-time.The final crystal structure is apatite. The average 1 d-compressive strength of the CPC remains high (>40 MPa) when the treating time was 10 min or less.
When the treating time increased to 30 min the compressive strength of the CPC largely declined. When apatite starts to dominate the surface, the strength of the CPC largely declines.
To assess the biocompatibility of surface-treated TTCP, cytotoxicity and implantation tests were studied. The results of cytotoxicity and histology show that the surface-treated TTCP is not cytotoxicity and can induce the
growth of the natural bone.
The purpose of the other study is to investigate the γ-ray effect on the structure and some critical properties, such as working/setting time and compressive strength, of a TTCP/DCPA-based CPC. Experimental results indicate that working/setting time, compressive strength, TTCP-HA
conversion rate and morphology of the present CPC are all related to the dosage of γ-ray sterilization. The best γ-ray dosage appears to be 30 kGy which leads to slightly longer setting/working time, the highest TTCP-HA
conversion rate and the highest compressive strength. With increasing γ-ray dosage, the morphology of CPC changed from sharp-edged petal-like morphology (10 kGy) to globular-like morphology (30 kGy) to dull-edged coralline-like morphology (80 kGy).
Albee F, Morrison H. Studies in bone growth. Annals of Surg 71:
32-38, 1920.
Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization,
toxicity, biocompatibility and clinical applications of
polylactic acid/ polyglycolic acid copolymers. Biomaterials
17(2): 93-102, 1996.
Bai B, Jazrawi L, Kummer F, Spivak J. The use of an injectable,
biodegradable calcium phosphate bone substitute for the
prophylactic augmentation of osteoporotic vertebrae and
management of vertebral compression fractures. Spine 24:
1521-1526, 1999.
Barko š D, Sold á n M, Hern á ndez-Fuentes I. Hydroxyapatitecollagen-
hyaluronic acid composite. Biomaterials 20: 191-
195, 1999.
Bermúez O, Boltong MG, Driessens FCM, Ginebra MP, Fernández
E, Planell JA. Chloride- and alkali-containing calcium
phosphates as basic materials to prepare calcium phosphate
cements. Biomaterials 15: 1019-1023, 1994.
Berridge M. V. et al., “The biomedical and cellular basis of cell
proliferation assays that use tetrazolium salts”, Biochemical
4: 15-19, 1996.
Binstock A, Posner AS. Calculation of the x-ray intensities from
arrays of small crystallites of hydroxyapatite. Arch Biochem
Biophys 124: 604-607, 1988.
126
Block MS, Kent JN, Guerra. Implants in dentistry. W.B. Saunders
Company, 1997.
Bohner M. Calcium orthophosphates in medicine: from ceramics
to calcium phosphate cements. Injury Int J Care Injured 31:
S-D37-47, 2000.
Bohner M. Physical and chemical aspects of calcium phosphates
used in spinal surgery. Eur Spine J 10: S114-S121, 2001
Boskey AL. Amorphous calcium phosphate: The contention of
bone. J Dent Res 76 (8): 1433-1436, 1997.
Brown WE, Epstein EF. Crystallography of tetracalcium
phosphate. Journal of Research of the National Bureau of
Standards- A Physics and Chemistry 6: 69A, 1965.
Brown WE, Chow LC. A new calcium phosphate setting cement. J
Dent Res Abs 207: 62-672, 1983.
Brown WE, Chow LC. Dental resptorative cement pastes. US
Patent No. 4518430, 1985.
Brown PW, Fulmer M. Kinetics of hydroxyapatite formation at
low temperature. J Am Ceram Soc 74: 934-940, 1991.
Callaghan JJ. Current concerts review: The clinical results and
basic science of total hip arthroplasty with porous-coated
prostheses. J Bone Joint Surg 75A: 299-310, 1993.
Chakkalakal DA, Mashoof AA, Novak J, Strates BS, McGuire MH.
Mineralization and pH relationships in healing skeletal
defects grafted with demineralized bone matrix. J Biomed
Mater Res 28: 1439-1443, 1994.
Chen WC, Ju CP, Chern Lin JH. Variation in Structure and Properties of
a non-dispersive TTCP/DCPA derived Calcium Phosphate Cement
Immersed in Hank’s Solution. J Oral Rehabil Accepted, 2002.
127
Chen WC, Chern Lin JH, Ju CP. Transmission Electron Microscopic Study on
Setting Mechanism of TTCP/DCPA-based Calcium Phosphate Cement. J
Biomed Mater Res 64A(4): 664-671, 2003.
Chow LC, Takagi S, Costantino PD, Friiedman CD. Self-setting
calcium phosphate cements. Specialty Cements with
Advanced Properties. 3-24, 1990.
Chow LC. Development of self-setting calcium phosphate cement.
The Centennial Memorial Issue 99(10): 954~964, 1991.
Chow LC, Takagi S. A natural bone cement-a laboratory novelty
led to the development of revolutionary new biomaterials.
Journal of research of the national institute of standards and
technology 106: 1029-1033, 2001.
Cory AH, Owen TC, Barltrop JA, Cory JG. Use of an aqueous
soluble tetrazolium/formazan assay for cell growth assays in
culture. Cancer Communications. 3(7): 207-12, 1991.
Costantz B, Ison I, Fulmer M. Skeletal repair by in situ formation
of the mineral phase of bone. Science 267: 1796-1799, 1995.
de Groot K, Klein CPAT, Wolke JGC, de Blieck-Hogervorst JMA,
Chemistry of Calcium phosphate bioceramics. pp.3-16, in
“Handbook of Bioactive Ceramics Vol.II”, edited by T.
Yamamuro, L.L. Hench and J. Wilson, CRC Press, Boca
Raton, FL, 1990.
de Groot K. Medical applications of calcium phosphate
bioceramics. The Centennial Memorial Issue of The Ceramic
Society of Japan 99: 943-953, 1991.
de Lange GL, Donath K. Interface between bone tissue and
implants of solid hydroxyapatite or hydroxyapatite-coated
titanium implants. Biomaterials 10: 121-125, 1989.
128
Denissen H. Dental root implants of apatite ceramics.
Experimental investigations and clinical use of dental root
implants made of apatite ceramics. Ph. D. Thesis, Vrije
Universiteit te Amsterdam 1979.
Driessens FCM. and Verbeck RMH. Biominerals, CRC Press,
Boca Ration, Boston 37-59, 1990.
Driessens FCM, Boltong MG, Bermú dez O, Planell JA, Ginebra
MP, Fernández E. Effective formulations for the preparation
of calcium phosphate bone cements. J Mater Sci: Mater in
Med 5: 164-170, 1994.
Elliot JC, Structure and Chemistry of the Apatites and Other
Calcium Orthophosphates. Elsevier, Amsterdam, 1994.
Eppley B. Development and clinical results of synthetic calcium
phosphate materials in craniomaxillofacial surgery.
Concepts and clinical applications of ionic cements Sept 8,
Arcahon, France, 1999.
Fulmer MT, Brown PW. Effects of Na2HPO4 and NaH2PO4 on
hydroxyapatite formation. Journal of Biomedical Materials
Research. 27(8): 1095-102, 1993.
Frankenburg E, Goldstein S, Bauer T, Harris S, Poser R.
Biomechanical and histological evaluation of a calcium
phosphate cement. J Bone Joint Surg 80-A(8): 1112-1124,
1998.
Friedman CD, Costantino PD, Jones K, Chow LC, Pelzer HJ,
Sisson GA. Hydroxyapatite cement II. Obliteration and
reconstruction of the cat frontal sinus. Arch Otolaryngol
Head Neck Surg 117: 385-389, 1991.
129
Fridman C, Costantino P, Takagi S, Chow LC. BoneSource
hydroxyapatite cement: a novel biomaterial for craniofacial
skeletal tissue engineering and reconstruction. J Biomed
Mater Res (Appl Biomater) 43: 428-432, 1998.
Getter L, Bhaskar S, Cutright D, Perez B, Brady J, Driskell T,
O’Hara M. Three biodegradable calcium phosphate slurry
implants in bone. J Oral Surg 30: 263-268, 1972.
Goodman S, Bauer T, Carter D et al. Norian SRS cement
augmentation in hip fracture treatment. Clin Orthop Rel Res
348: 42-50, 1998.
Grimandi G, Weiss P, Millot F, Daculsi G. In vitro evaluation of a
new injectable calcium phosphate material. J Biomed Mater
Res 39: 660-666, 1998.
Hamanishi C, Kitamoto K, Ohura K, Tanaka S, Doi Y. Self-setting,
bioactive, and biodegradable TTCP-DCPD apatite cement. J
Biomed Mater Res 32: 383-389, 1996.
Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding
mechanism at the interface of ceramic prosthetic materials. J
Biomd Mater Res Symp 2: 117-141, 1971.
Hench LL. Bioactive Glass and Glass-Ceramic, A Perspective.
CRC Handbook of Bioactive Ceramics. I: 3-4, 1990.
Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc
74: 1487-1510, 1991.
Hulbert SF, Hench LL, Forbers D, Bowman LS. History of
bioceramics. Ceram Internat 8: 131-140, 1982.
Hulbert SF, Bokros JC, Hench LL, Wilson J, Heimke G. Ceramics
in clinical applications, past, present and future. In:
130
Ceramics in Clinical Applications. edited by Vincenzini P.
Elsevier, Amsterdam-oxford-New York-Tokyo 3-27, 1987.
Hulbert SF, Yamamuro T, Hench LL and Wilson J. Bioactive
ceramic-bone interface. CRC Handbook of Bioactive
Ceramics 1: 3-6, 1991.
Imura AT, Saito S, Ikegami. US Patent No. 5569490, 1996.
Ishikawa K, Asaoka K. Estimation of ideal mechanical strength
and critical porosity of calcium phosphate cement. J Biomed
Mater Res 29: 1537-1543, 1995.
Ishiyama M. In Vitro Toxicology. 8: 187-189, 1995.
Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue,
cellular and subcellular events at a bone-ceramic
hydroxyapatite interface. J Bioengineering 1: 79-92, 1977.
Joyner RE. Chronic toxicity of ethylene oxide. Arch. Env. Health
8: 700-710, 1964.
Kay MI, Young RA. Crystal structure of hydroxyapatite. Nature
204: 1050, 1964.
Klein C, de Groot K, Chen W, Li Y, Zhang X. Osseous substance
formation induced in porous calcium phosphate ceramics in
soft tissues. Biomaterials 15: 31-34, 1994.
Knaack D, Goad MEP, Aiolova M, Rey C, Tofighi A,
Chakravarthy P, Lee DD. Resorbable calcium phosphate
bone substitute. J Biomed Mater Res 43: 399-409, 1998.
Kokubo T. Recent progress in glass-based materials for
biomedical applications. The Centennial Memorial Issue of
The Ceramic Society of Japan 99: 965-973, 1991.
131
Köster K, Karbe E, Kramer H, Heide H, König R. Experimenteller
knochenersatz durch resorbierbare calcium phosphatekeramik.
Langenbecks Arch Chir 341: 77-86, 1976.
Kurashina K, Kurita H, Hirano M, Kotani A, Klein C, de Groot K.
In vivo study of calcium phosphate cements: implantation of
an α -tricalcium phosphate/ dicalcium phosphate dibasic/
tetracalcium phosphate monoxide cement paste. Biomaterials
18: 539-543, 1997.
Lebugle A, Rodrigues A, Bonnevialle P, Voigt JJ, Canal P,
Rodrigues F. Study of implantable calcium phosphate
systems for the slow release of methotrexate. Biomaterials
23: 3517-3522, 2002.
LeGeros RZ. Calcium Phosphates in Oral Biology and Medicine.
Monographs in Oral Science 15: 117-126, 1991.
LeGeros RZ. Biological and synthetic apatites. edit by Brown PW,
CRC Press, Florida 3, 1994.
LeGeros RZ. Properties of osteoconductive biomaterials: calcium
phosphates. Clinical Orthopaedics & Related Research. 395:
81-98, 2002.
Lewis G, Mladsi S. Effect of sterilization method on properties of
Palacos® R acrylic bone cement. Biomaterials 19: 117-124,
1998.
Lynch SE, Genco RJ, Marx RE. Tissue engineering: Application
in maxillofacial surgery and periodontics. Quintessence
Publishing Co, Inc Illinois, 1999.
Maxian SH, Zawadsky JP, Dunn MG. In vitro evaluation of
amorphous calcium phosphate and poorly crystallized
132
hydroxyapatite coatings on titanium implants. Journal of
Biomedical Materials Research. 27(1): 111-7, 1993.
Mears DC. Metals in medicine and surgery. International Metals
Reviews June: 119-153, 1977.
Mermelstein L, Chow LC, Friedman C, Crisco J. The
reinforcement of cancellous bone screws with calcium
phosphate cement. J Orthop Trauma 10: 15-20, 1996.
Mermelstein L, McLain R, Yerbi S. Reinforcement of
thoracolumbar burst fractures with calcium phosphate
cement. Spine 23: 664-671, 1998.
Miyamoto Y, Ishiawa K, Takechi M, Toh T, Yussa T, Nagayama
M, Kon M, Asaoka. Tissue response to fast-setting calcium
phosphate cement in bone. J Biomed Mater Res 37: 457-464,
1997.
Miyamoto Y, Ishiawa K, Takechi M, Toh T, Yussa T, Nagayama
M, Suzuki K. Histological and compositional evaluations of
three types of calcium phosphate cements when implanted in
subcutaneous tissue immediately after mixing. J Biomed
Mater Res (appl Biomater) 48: 36-42, 1999.
Mongiorgi R and Krajewski A. Mineralogical alterations in
osteoporotic bone tissue structure. Biomaterials 2: 147-151,
1981.
Moore D, Maitra R, Farjo L, Graziano G, Goldstein S. Restoration
of pedicle screw fixation with an in situ setting calcium
phosphate cement. Spine 22:1696-1705. 1997.
Mosmann T. Rapid colorimetric assay for cellular growth and
survival: application to proliferation and cytotoxicity assays.
Journal of Immunological Methods. 65(1-2): 55-63, 1983.
133
Nancollas GH, Mohan MS. The growth of hydroxyapatite crystals.
Archives of Oral Biology. 15(8): 731-45, 1970.
Ohura K, Bohner M, Hardouin P, Lemaitre J, Pasquier G, Flautre
B. Resorption of, and bone foration from, new β-tricalcium
phosphate-monocalcium phosphate cements: An in vivo
study. J Biomed Mater Res 30: 193-200, 1996.
Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi WI. Effect of
particle size of metastable calcium phosphates on
mechanical strength of a novel self-setting bioactive calcium
phosphate cement. Journal of Biomedical Materials Research.
29(1): 25-32, 1995.
Park JB. Biomaterials, An Introduction. Plenum Press. New York,
1979.
Park JB. Biomaterials Science and Engineering. Plenum Press.
New York and London, 1985.
Park JB, Lakes RS. Biomaterials, An Introduction, Second Edition.
Plenum Press. New York and London, 1992.
Peelen J, Rejda B, Vermeiden J, de Groot K. Sintered tricalcium
phosphate as bioceramic. Science of Ceramics 9: 226-236,
1977.
Radin SR, Ducheyne P. The effect of calcium phosphate ceramic
composite and structure on in vitro behaviorⅡ Precipitation.
J Biomed Mat Res 27: 35-45, 1993.
Rateitschak KH, Wolf HF. Color Atlas of Dental Medicine.
Thieme Medical Publishers, 1995.
Ravaglioli A, Krajewski A. Bioceramics: Materials, Properties,
Applications. Chapman & Hall Press, London 44-45, 1992.
134
Ray R, Degge J, Gloyd P, Mooney G. Bone regeneration. J Bone
Joint Surg 34A: 638-647, 1952.
Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL. An
improved colorimetric assay for cell proliferation and
viability utilizing the tetrazolium salt XTT. Journal of
Immunological Methods. 142(2): 257-65, 1991.
Rohanizadeh R, Padrines M, Bouler JM, Couchourel D, Fortun Y,
Daculsi G. Apatite precipitation after incubation of biphasic
calcium-phosphate ceramic in various solutions: Influence
of seed species and proteins. J Biomed Mater Res 42: 530-
539, 1998.
Roy D, Linnehan S. Hydroxyapatite formed from coral skeletal
carbonate by hydrothermal exchange. Nature 247: 220-222,
1974.
Schmitz JP, Hollinger JO, Milam SB. Reconstruction of bone
using calcium phosphate bone cements: a critical review. J
Oral Maxillofac Surg 57: 1122-1126, 1999.
Sergey V. Dorozhkin, Matthias Epple. Biological and Medical
Significance of Calcium Phosphates. Angew. Chem. Int. Ed
41: 3130-3146, 2002.
Serro AP, Saramago B. Influence of sterilization on the
mineralization of titanium implants included by incubation
in various biological model fluids. Biomaterials 24: 4749-
4760, 2003.
Soballe K. Hydroxyapatite ceramic coating for bone implant
fixation. ACTA Orthopaed Scandin Supplem 64: 1-58, 1993.
Stanewich C, Swiontkowski M, Tencer A, Yetkinler D, Poser R.
Augmentation of femoral neck fracture fixation with an
135
injectable calcium-phosphate bone mineral cement. J
Orthopaedic Res 14: 786-793, 1996.
Sugawara A, Nishiyama M, Kusama K, Moro I, Nishimura S,
Kudo I, Chow LC, Takagi S. Histopathological reaction of
calcium phosphate cement. Dent Mater J 11: 11-16, 1992.
Suwanprateeb J, Tanner KE, Turner S, Bonfield W. Influence of
sterilization by gamma irradiation and thermal annealing on
creep of hydroxyapatite-reinforced polyethylene composites.
J Biomed Mater Res, 39: 16-22, 1998.
TenHuisen KS, Brown PW. The formation of hydroxyapatiteionomerr
cements at 38℃. J Dent Res 3: 598-606, 1994.
Thordarson D, Hedman T, Yetkinler D, Eskander E, Lawrence T,
Poser R. Superior compressive strength of a calcaneal
fracture construct augmented with remodelable cancellous
bone cement. J Bone Joint Surg 81A(2): 239-246, 1999.
Van Blitterswijk CA, Hesseling SC, Grote JJ, Koerten HK de
Groot K. The biocompatibility of hydroxyapatite ceramics:
A study of retrieved human middle ear implants. J. Biomed.
Mat. Res 24: 433-43, 1990.
Van Eeden SP, Ripamonti U. Bone differentiation in porous
hydroxyapatite in baboons is regulated by the geometry of
the substratum: implications for reconstructive craniofacial
surgery. Plast Reconstr Surg 93: 1563-1570, 1990.
Wallin R. F. and E. F. Arscott, A Partial Guide to ISO 10993-5:
Cytotoxicity.
136
Welch JH. and Gutt W. High temperature studies of the system
calcium oxide-phosphorus pentoxide. J Chem Soc 4442-4444,
1961.
Williams DF. Review: tissue-biomaterial interactions. J Mat Sci
22: 3421-3425, 1987.
Yokoyama A, Yamamoto S, Kawasaki T, Kohgo T, Nakasu M.
Development of calcium phosphate cement using chitosan
and citric acid for bone substitute materials. Biomaterials.
23(4): 1091-101, 2002.
Ying. Nanocrystalline apatites and composite prostheses
incorporating them, and method for their production ,US
patent 6013591, 2000.
Zahraoui C, Sharrock P. Influence of sterilization on injectable
bone biomaterials. Bone 25(2): 63S-65S, 1999.
Zhou J, Zhang X, Chen J, Zeng S, de Groot K. High temperature
characteristics of synthetic hydroxyapatite. J Mat Sci:Mat in
Med 4: 83-85, 1993.
盧光舜,消毒學, 南山堂出版社,4-8, 1985.
張炳龍, ROSS 組織學, 合記圖書出版社, 147-158, 1991.
池華瑋, 微生物指引, 高明書局, 1994.
周邦彥, 骨科生醫材料之發展與應用, 技術與訓練27卷4期, 163-171, 2002.