簡易檢索 / 詳目顯示

研究生: 王耀文
Wang, Yao-Wen
論文名稱: 脂肪分解酵素之生產、固定化並應用於生質柴油之合成
Burkholderia lipase production, immobilization and applications in biodiesel synthesis
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 127
中文關鍵詞: 生質柴油反應曲面法酵素固定化1,3 特異性脂肪酶
外文關鍵詞: Biodiesel, respond surface methodology, immobilized lipase, Burkholderia sp., transesterification
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討Burkholderia sp.脂肪分解酶之生產、固定化以及生質柴油之合成。在酵素生產方面,本研究以實驗設計法提高Burkholderia sp.之脂肪分解酶產量,所採用的實驗設計法為反應曲面法(RSM),先以二水準因子法篩選出對酵素活性有較大影響之因子,所考慮之因素有olive oil,yeast extract和hexadecane之濃度,其結果顯示olive oil和yeast extract對酵素產量有較明顯之影響。再以此兩因素做反應曲面法分別求得最佳濃度為5.54 ml/L和2.175 g/L,其活性可以達到16.765 U/ml。為了大量生產脂肪分解酵素,本研究以發酵槽方式培養並探討其發酵策略,其探討的策略主要為通氣速率與pH 控制。實驗結果發現以通氣速率為1 vvm與pH控制在6.5的條件下,在發酵培養24小時下可得22.67 U/ml之酵素活性。
    本研究接著將所生產之酵素進行酵素固定化,所探討之固定化方法為吸附法(HMP)與共價鍵結法(AMP)。結果顯示,吸附法所得到之固定化酵素,在單位載體量下有較大的酵素活性。其Langmuir isotherm等溫吸附曲線顯示以吸附法之最大的酵素吸附量為4619 U/g,而其Kd值為2.16 U/ml。本研究亦探討HMP固定化酵素(HMP-E)的再生程序與重複使用性。結果顯示,HMP-E再經過丙酮、酒精與Triton X100清洗後可以再回復其原始吸附能力;而在重複使用性方面,在連續重複操作六次後,HMP-E其初始反應速率仍能維持不變。因此,本研究所開發之固定化酵素具有高重複使用性,應有商業化應用之潛力。
    最後本研究探討以固定化酵素(HMP-E)進行生質柴油合成之研究,其探討因素包括含水量、轉速、溫度、醇油比、油種、醇類、甘油影響、多階段甲醇添加、co-solvent、載體前處理與pH影響。其結果顯示含水率在10~20%較佳,溫度為40度下有較快的反應速率,醇油莫爾比可以承受到4.22:1,醇類以甲醇與乙醇有較好的反應性。本研究所開發之固定化酵素,對食用油與廢廚油的轉酯化皆有良好的催化能力;至於甘油、多階段甲醇添加、co-solvent、載體前處理與調控pH等策略則無法促進其反應速率。最後,本研究探討為何所開發的固定化酵素在生質柴油轉化率達60%以上後,其反應速率會趨於遲緩。探討方法是隨反應時間針對FAME、FFA、monoglyceride、diglycerides與triglycerides進行分析,結果發現在反應後期有10% FFA與20% monoglyceride之累積殘留,因此判斷為後期反應速率決定步驟在於esterification和acyl migration,並間接證明本實驗所使用之脂肪分解酶可能為1,3-specific lipase。為了解決後期反應速率變慢之問題,本研究以商業化lipase Novozyme 435協同本研究開發之固定化酵素進行生質柴油合成(共酵素策略),結果發現可在18小時內即可達到達到92.5%生質柴油轉化率。

    Strategies for Burkholderia lipase production, lipase immobilization, and lipase-catalyzed biodiesel production were investigated. The production of the lipase was affected by the addition of olive oil, yeast extract and hexadecane. The optimal lipase production strategy was determined with the aid of response surface methodology (RSM). According to RSM, 16.765 U/ml lipase would be produced from Burkholderia sp. as the concentrations of olive oil and yeast extract in the growth broth are 5.775 ml/L and 2.175 g/L, respectively. Using the optimal medium composition, the Burkholderia lipase was then produced in 5 L fermentor. It was found that aeration rate and pH were the most crucial factors affecting the production of lipase. The fermentor study shows that in 24 hours up to 22.675 U/ml of lipase was produced at pH 6.5 and an aeration rate of 1 vvm.
    Lipase was immobilized on the ferrous oxide supports modified by hydrophobic (HMP) or amino group (AMP). Lipase was immobilized on the supports via hydrophobic interaction and the formation of covalent bonding between the lipase and the functional group on HMP and AMP. The results indicate that the hydrophobic group grafted on HMP has high affinity for lipase. Simulation with Langmuir isotherm shows that the maximum activity of HMP immobilized lipase (HMP-E) was 4619 U/g.
    The regeneration and reusability of HMP-E were also studied. The used HMP was recovered by the post-treatments of acetone, ethanol and Triton X100, respectively. HMP-E was then reused to catalyze the reaction of biodiesel production. After 6 regeneration and reuse cycles, the activity of the regenerated HMP-E remained similar activity to its original one, indicating a good stability and reusability of the HMP immobilized lipase.
    Next, the immobilized lipase was used for biodiesel production. The influential factors examined include water content, stirring rate, temperature, methanol-oil ratio, oils type, acyl acceptors and glycerol concentration. The results show that biodiesel production rate was enhanced when the reaction is carried at pH 6.5 and 40oC with a water content of 10-20 wt%. The best methanol to oil molar ratio for biodiesel production was 4.22:1. However, the vegetable oil type, pH and, the addition of glycerol and co-solvent did not significantly affect the production of biodiesel.
    Time-course monitoring of the reaction solution composition shows accumulation of mono-glyceride (20 wt%) and free fatty acids (10 wt%). Thus, the Burkholderia lipase could be 1,3-specific lipase. The accumulation of mono-glyceride and free fatty acids could explain why the biodiesel conversion became very slow when the transesterification reached 60% conversion. With the addition of Novozyme 435, the delay in reaction rate in the late stage could be improved.

    Contents 摘要 I Abstract IV Acknowledgment VI Contents VIII List of Tables XIII List of Figures XV Chapter 1 Introduction 1 1.1 Motivation and purpose 1 Chapter 2 Literature review 3 2.1 Biomass energy 3 2.1.1 Bio-ethanol and bio-butanol 4 2.1.2 Hydrogen 5 2.1.3 Biodiesel 6 2.2 Biodiesel production 8 2.2.1 Alkaline catalysis 8 2.2.2 Acid catalysis 10 2.2.3 Lipase catalysis 12 2.2.4 Supercritical alcohol process 14 2.3 Lipase 15 2.4 Immobilized enzyme 22 2.4.1 Classification of immobilization methods 22 2.4.2 Immobilization of lipase 25 2.5 Respond surface methodology (RSM) 28 Chapter 3 Materials and methods 30 3.1 Chemicals, materials and strain 30 3.2 Equipment 32 3.3 Analysis and measurements 33 3.3.1 Preparation of emulsified substrate for pH-stat assay 33 3.3.2 Determination of lipase activity using pH-stat titration 33 3.3.3 The definition of lipase activity 33 3.3.4 The activity assay of immobilized lipase (HMP-E) 34 3.3.5-1 Analysis of biodiesel (with Stabilwax column) 34 3.3.5-2 Measurement of biodiesel (with Rtx-Biodiesel TG column) ………………………………………………………..36 3.3.6 Biodiesel production by alkaline catalysis 37 3.3.7 Biodiesel production by acidic catalysis 37 3.3.8 The estimation of the molecular weight of olive oil 38 3.3.9 Calculation of biodiesel conversion 38 3.3.10 Preparation of stock of the bacterium used in this study 38 3.3.11 Preparation of crude lipase powder 39 3.3.12 Lipase isolation via salting out 39 3.3.13 Dialysis 40 3.3.14 SDS-PAGE 40 3.3.15 Zymography 41 3.4 Lipase production 41 3.4.1 Lipase production in flasks 41 3.4.2 Two-level factorial design 42 3.4.3 The method of path of steepest ascent 43 3.4.4 Response surface methodology 44 3.4.5 Fermentation 46 3.5 Properties of the Burkholderia lipase 46 3.5.1 Optimum temperature for lipase hydrolysis 46 3.5.2 Optimum pH for lipase hydrolysis 46 3.5.3 Thermal stability of lipase 47 3.5.4 The influence of pH on lipase activity 47 3.6 Synthesis of enzyme immobilization supports 47 3.6.1 The synthesis of supporter (magnetic particles, MP) 47 3.6.2 Surface modification using the SMP support 48 3.6.3 Grafting hydrophobic group onto the surface of supporter (HMP) 48 3.6.4 Grafting –NH2 group onto the surface of supporter (AMP) 49 3.7 Lipase immobilization 49 3.7.1 Hydrophobic interaction adsorption 49 3.7.2 Immobilization by amino group modified magnetic particles 49 3.7.3 Adsorption curve of HMP and MP 50 3.7.4 Langmuir isotherm of adsorption of lipase on HMP 50 3.7.5 The desorption of immobilized lipase 50 3.7.6 HMP recovery at each step of desorption process 51 3.8 Transesterification 52 3.8.1 Biodiesel production catalyzed by immobilized lipase 52 3.8.2 Recycling ability of immobilized enzyme 52 3.8.3 Methanol inhibition experiments 52 3.8.4 Biodiesel produced from one-step and stepwise methanol feeding procedure 53 3.8.5 Addition of Co-solvent for enhancing biodiesel production 53 3.8.6 Effect of reaction parameters on the production of biodiesel 53 3.8.7 Pre-treatment of immobilized lipase particles 54 3.8.8 Effect of glycerol on the production of biodiesel 54 3.8.9 Transesterification of food oil and waste cooking oil with methanol 54 3.8.10 Effect of different acyl acceptors on biodiesel production 54 3.8.11 The effect of stabilizing pH value on biodiesel production 55 3.8.12 Transesterification by dual-enzyme strategy 55 Chapter 4 Results and discussion 56 4.1 Introduction 56 4.2 Effect of growth medium composition on lipase production 56 4.3 Medium optimization for fermentative lipase production by statistical experimental design 61 4.3.1 Two-level factorial design and the method of path of steepest ascent 61 4.3.2 Response surface methodology (RSM) 64 4.4 Lipase production from Burkholderia sp. 69 4.4.1 Effect of aeration rate on lipase production 69 4.4.2 Effect of initial pH on lipase production 71 4.5 The properties of lipase 74 4.6 Immobilization of Burkholderia lipase 79 4.6.1 Supports properties 79 4.6.2 Lipase immobilization 84 4.6.3 Langmuir adsorption isotherm 86 4.6.4 Hydrolysis, storage, regeneration and reusing ability of HMP 89 4.7 Factors affecting the reaction rate of transesterification 95 4.8 Strategies to improve biodiesel production by the immobilized Burkholderia lipase 100 4.8.1 Methanol inhibition 100 4.8.2 Glycerol effect 101 4.8.3 Pretreatment of immobilized lipase 105 4.8.4 Effect of free fatty acid formation 106 4.9 Different acyl acceptors and oils applied to biodiesel production ……………………………………………………………….. 108 4.10 Mechanism study of Burkholderia lipase. 111 Chapter 5 Conclusions 118 References 120

    Akoh C.C., Chang S.W., Lee G.C., Shaw J.F.. Enzymatic approach to biodiesel production. J. Agric. Food Chem. 22:8995-9005 (2007).

    Al-Zuhair S., Jayaraman K.V., Krishnan S., Chan W.H.. The effect of fatty acid concentration and water content on the production of biodiesel by lipase. Biochem. Eng. J. 30:212-217 (2006).

    Bai Y. X., Li Y.F., Yang Y., Yi L.X.. Covalent immobilization of triacylglycerol lipase onto functionalized novel mesoporous silica supports. J. Biotechnol. 125:574-582. (2006).

    Bastida A., Sabuquillo P., Armisen P., Fernandez-Lafuente R., Huguet J., Guisan J.M.. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng. 5;58(5):486-93. (1998).

    Barnwal B.K., Sharma M.P.. Prospects of biodiesel production from vegetables oils in India. Renew. Sust. Energ. Rev. 9:363-378. (2005).

    Berchmans H.J. and Hirata S.. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol. 99:1716-1721. (2008).

    Boekema B.H.K.L., Beselin A., Breuer M., Hauer B., Koster M., Rosenau F., Jaeger K.E., Tommassen J.. Hexadecane and Tween 80 Stimulate Lipase Production in Burkholderia glumae by Different Mechanisms. Appl. Environ. Microbiol. 73:3838-3844. (2007).

    BP Statistical Review of World Energy June (2009).

    Box G.E.P., Wilson K.B.. On the experimental attainment optimum conditions. J. Roy. Statist. Soc. B13:1-45. (1951).

    Chen J.Y., Wen C.M., Chen T.L.. Effect of oxygen transfer on lipase production by
    Acinetobacter ratioresistens. Biotech. Bioeng. 62:311-316. (1999).

    Chen S.J., Cheng C.Y., and Chen T.L. Production of an alkaline lipase by Acinetobacter radioresistens. J. Ferment. Bioeng. 86:308-312. (1998).

    Chiou S.H., Wu W.T.. Immobilization of Candida rugosa lipase on chitosan with
    activation of the hydroxyl groups. Biomaterials. 25:197-204. (2004).

    Chisti Y.. Biodiesel from microalgae. Biotechnol. Adv. 25:294-306. (2007).

    Deng H.T., Xu Z.K., Wu J., Ye P., Liu Z.M., Seta P.. A comparative study on lipase
    immobilized polypropylene microfiltration membranes modified by sugar-containing
    polymer and polypeptide. J. Mol. Catal. B-Enzym. 28, p. 95-100. (2004).

    Dong H., Gao S., Han S.P., Cao S.G.. Purification and characterization of a Pseudomonas sp. lipase and its properties in non-aqueous media. Biotechnol Appl Biochem. 30:251–6. (1999).

    Dossat V., Combes D., Marty A.. Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production. Enzyme Microb. Technol. 25:194-200. (1999).

    Fernandez-Lafuente R., Armisen P., Sabuquillo P., Fernandez-Lorente G., Guisan J.M.. Immobilization of lipases by selective adsorption on hydrophobic supports. Chem. Phys. Lipids. 93:185–197. (1998).

    Fjerbaek L., Christensen K.V., Norddahl B.. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol. Bioeng. 102-1298-1315. (2009).

    Foglia T.A., Nelson L.A., Marmer W.N.. Production of biodiesel, lubricants and fuel and lubricant additives. US Patent 5743965. (1998).

    Freedman B., Pryde E.H., Mounts T.L.. Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61:1638-1643. (1984).

    Frost G.M., Moss D.A.. Production of enzymes by fermentation. In: Kennedy JF(ed) Biotechnology. Verlag chemie, Weinheim. 7a: 65-211. (1987).

    Gao Y, Tan T.W., Nie K.L., Wang F.. Immobilization of Lipase on Macroporous Resin and Its Application in Synthesis of Biodiesel in Low Aqueous Media. Chinese Journal of Biotechnology. 22:114-118. (2006).

    Gerpen J.V.. Biodiesel processing and production. Fuel Process. Technol. 86:1097-1107. (2005).

    Gitlesen T., Bauer M., Adlercreutz P.. Adsorption of lipase on polypropylene powder. Biochimica et Biophysica Acta. 1345:188-196. (1997).

    Green Technologies, LLC, (2006).

    Gupta N., Rathi P., Singh R., Goswami K.V., Gupta R.. Single-step purification of lipase from Burkholderia multivorans using polypropylene matrix. Appl. Microbiol. Biotechnol. 67:648-653. (2005).

    Haas M. J.. Fuels as solvent for the conduct of enzymatic reactions. US Patent 5697986. (1997).

    Hasan F., Shah A.A., Hameed A.. Industrial applications of microbial lipases. Enzyme Microb. Tech. 39:235-251. (2006).

    Hallenbeck P.C., Ghosh D.. Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol. 27:287-289. (2009).

    Hilal N., Kochkodan V., Nigmatullin R., Goncharuk V., Al-Khatib L.. Lipase-immobilized biocatalytic membranes for enzymatic esterification: comparison of various approaches to membrane preparation. J. Membrane Sci. 268:198-207. (2006).

    Hsu A. F., Jones K.C., Foglia T.A., Marmer W.N.. Transesterification activity of lipases immobilized in a phyllosilicate sol-gel matrix. Biotechnol. Lett. 26:917-921. (2004).

    Iso M, Chen B., Eguchi M., Kudo T., Shrestha S.. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J. Mol. Catal. B-Enzym. 16:53–58. (2001).

    Jaeger K.E., Ransac S., Dijkstra B.W., Colson C., Van Heuvel M., Misset O.. Bacterial lipases. FEMS Microbiol. Rev. 15:29-63. (1994).

    Jaeger K.E., Reetz T.M.. Microbial lipases from versatile tools for biotechnology. Trends Biotechnol. 16: 396-403. (1998).

    Kaieda M., Samukawa T., Kondo A., Fukuda H.. Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng. 91:12-5. (2001).

    Khare S. K., Nakajima M.. Immobilization of Rhizopus japonicus lipase on celite and its application for enrichment of docosahexaenoic acid in soybean oil. Food Chem. 68:153-157. (2000).

    Kose O., Tuter M., Aksoy H.A.. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresour. Technol. 83:125–129. (2002).

    Kumari V., Shah S., Gupta M.N.. Preparation of Biodiesel by Lipase-Catalyzed Transesterification of High Free Fatty Acid Containing Oil from Madhuca indica. Energy Fuels. 21:368-372. (2007).

    Lai C.C., Zullaikah S., Vali S.R., Ju Y.H.. Lipase-catalyzed production of biodiesel from rice bran oil. J. Chem. Technol. Biotechnol. 80:331–337. (2005).

    Lee D., Kok Y., Kim K., Kim B., Choi H., Kim D., Suhartono M.T., Pyun Y.. Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett. 179:393–400. (1999).

    Leung D.Y.C., Wu X., Leung M.K.H.. A review on biodiesel production using catalyzed transesterification. Appl. Energy. 87:1083-1095. (2010).

    Liu C.H.. Isolation and application of lipase producing bacteria, (2008). (dissertation).

    Lotero E., Goodwin J.G., Bruce D.A., Suwannakarn K., Liu Y., Lopez D.E.. The catalysis of biodiesel synthesis. Catalysis. 19:41–83. (2006).

    Ma F., Hanna M.A.. Biodiesel production: a review. Bioresour. Technol. 70:1-15. (1999).

    Macrae A.R.. Lipase-catalyzed interesterification of oils and fats. J. Am. Oil Chem. Soc. 60:291-294. (1981).

    Meher L.C., Sagar D.V., Naik S.N.. Technical aspects of biodiesel production by
    transesterification-a review. Renew. Sust. Energ. Rev. 10:248-268. (2006).

    Modi M.K., Reddy J.R.C., Rao B.V.S.K., Prasad R.B.N.. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour. Technol. 98:1260–1264. (2007).

    Myers R.H., Montgomery D.C.. Response surface methodology: process and product
    optimization using designed experiments. John Wiley & Sons, Inc. New York. (1995).

    Nie K., Xie F., Wang F., Tan T.. Lipase catalyzed methanolysis to produce biodiesel: Optimization of the biodiesel production. J. Mol. Catal. B-Enzym. 43:142–147. (2006).

    Oliveira D., Oliveira J.D.. Enzymatic alcoholysis of palm kernel oil in n-hexane and
    SCCO2. J. Supercrit. Fluid. 19:141-148. (2001).

    Orcaire O., Buisson P., Pierre A.C.. Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J. Mol. Catal. B-Enzym. 42:106-113. (2006).

    Palomo J.M., Munoz G., Fernandez-Lorente G., Mateo C., Fernandez-Lafuente R., Guisan J.M.. Interfacial adsorption of lipases on very hydrophobic support (octadecyl–Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J. Mol. Catal. B-Enzym. 19-20:179-286. (2002).

    Park E.Y., Sato M., Kojima S.. Lipase-catalyzed biodiesel production from waste activated bleaching earth as raw material in a pilot plant. Bioresour. Technol. 99:3130–3135. (2008).

    Papaparaskevas D., Christakopoulos P., Kekos D., Macris B.J.. Optimizing production of extracellular lipase from Rhodotorula glutinis. Biotechnol. Lett. 14:397-402. (1992).

    Persson M., Wehtje E., Adlercreutz P.. Immobilisation of lipases by adsorption and desorption: high protein loading gives lower water activity optimum. Biotechnol. Lett. 22:1571-1575. (2000).

    Ranganathan S.V., Narasimhan S.L., Muthukumar K.. An overview of enzymatic production of biodiesel. Bioresour .Technol. 99:3975-81. (2008).

    Ramachandra Murty V., Bhat J., and Muniswaran P.K.A.. Hydrolysis of Oils by Using Immobilized Lipase Enzyme: A Review. Biotechnol. Bioprocess Eng. 7: 57-66. (2002).

    Rathi P., Saxena R. K., Gupta R.. A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem. 37:187-192. (2001).

    Rathi P., Bradoo S., Saxena R.K., Gupta R.. A hyper-thermostable, alkaline lipase from Pseudomonas sp. with the property of thermal activation. Biotechnol. Lett. 22:
    495-498. (2000).

    Reis P., Holmberg K., Watzke H., Leser M.E. and Miller R.. Lipases at interfaces: A review. Adv. Colloid Interface Sci. 147:237-150. (2009).

    Robles-Medina A., Gonzalez-Moreno P.A., Esteban-Cerdan L., Molina-Grima E.. Biocatalysis: Towards ever greener biodiesel production. Biotechnol. Adv. 27:198-408. (2009).

    Royon D., Daz M., Ellenrieder G., Locatelli S.. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour. Technol. 98:648–653. (2007).

    Samukawa T., Kaieda M., Matsumoto T., Ban K., Kondo A., Shimada Y., Noda H., Fukuda H.. Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. J. Biosci. Bioeng. 90:180-183. (2003).

    Saxena R.K., Sheoran A., Giri B., Sheba Davidson W.. Purification strategies for microbial lipase. J. Microbiol. Methods. 52:1-18. (2003).

    Sharma R., Chisti Y., Banerjee U.C.. Production, purification, characterization, and
    applications of lipases. Biotechnol. Adv. 19:627-662. (2001).

    Shimada Y., Watanabe Y., Samukawa T., Sugihara A., Noda H., Fukuda H. and Tominaga Y.. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase, JAOCS 76:789-793. (1999).

    Shimada Y., Watanabe Y., Samukawa T., Sugihara A., Tominaga Y.. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Mol. Catal. B-Enzym. 17:133-142. (2002).

    Shimada Y., Watanabe Y., Samujawa T., Sugihara A., Noda H., Fukuda H., and Tominaga Y.. Conversion of vegetable oil to biodoesel using immobilized Candida antarctica lipase. J. Am. Oil Chem. Soc. 76:789-793. (1999).

    Soumanou M.M., Bornscheuer U.T.. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb. Technol. 33:97–103. (2003).

    Veljkovic V.B., Lakicevic S.H., Stamenkovic O.S., Todorovic Z.B., Lazic M.L.. Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel. 85:2671-2675. (2006).

    Verger R. and de Haas, G.H.. lnterfacial enzyme kinetics of lipolysis. Annu. Rev. Biophys. Bioeng. 5:77-117. (1976).

    Vyas A.P., Verma J.L., Subrahmanyam N.. A review on FAME production processes. Fuel. 89:1-9. (2010).

    Wang L., Du W., Liu D., Li L., Dai N.. Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J J. Mol. Catal. B-Enzym. 43:29–32. (2006).

    Wang Y., Srivastava K.C., Shen G.J., Wang H.Y.. Thermostable alkaline lipase from a newly isolated thermophilic Bacillus strain, A30-1 (ATCC 53841). J Ferment Bioeng. 79:433–8. (1995).

    Wang Z. G., Wang J.Q., Xu Z.K.. Immobilization of lipase from Candida rugosa on
    electrospun polysulfone nanofibrous membranes by adsorption. J. Mol. Catal.
    B-Enzym. 42:45-51. (2006).

    Warabi Y., Kusdiana D., Saka S.. Biodiesel fuel from vegetable oil by various supercritical alcohols. Appl. Biochem. Biotechnol. 115:793-801. (2004).

    Watanabe Y., Shimada Y., Sugihara A., Noda H., Fukuda H., and Tominaga Y.. Continuous Production of Biodiesel Fuel from Vegetable Oil Using Immobilized Candida antarctica Lipase. JAOCS. 77: 355-360. (2000).

    Won K., Kim S., Kim K.J., Park H.W., Moon S.J.. Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem. 40:2149-2154. (2005).

    Xu Y., Du W., Liu D., Zeng J.. A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium. Biotechnol. Lett. 25: 1239–1241.( 2003).

    Yin J.Z., Xiao M., Song J.B.. Biodiesel from soybean oil in supercritical methanol with co-solvent. Energ Convers Manage. 49:908-912.( 2008).

    Zhang Y., Dubé M.A., McLean D.D., Kates M.. Biodiesel production from waste cooking oil: 1. process design and technological assessment. Bioresource Technol. 89:1-16. (2003).

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE