| 研究生: |
陳奕瑋 Chen, Yi-Wei |
|---|---|
| 論文名稱: |
水熱法製備高熵Ba(Ti,Hf,Zr,Fe,Sn)O3奈米柱膜及其壓電相關應用 Facile Hydrothermal Fabrication of High Entropy Ba(Ti,Hf,Zr,Fe,Sn)O3 Nanorod Films on FTO Substrates and Their Piezoelectric-related Applications |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 高熵氧化物 、Ba(Ti,Hf,Zr,Fe,Sn)O3膜 、水熱法 、形貌調整 、壓電常數 |
| 外文關鍵詞: | high entropy oxide, Ba(Ti,Hf,Zr,Fe,Sn)O3 film, hydrothermal method, morphology tuning, piezoelectric constant |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高熵氧化物(HEOs)因為眾多的應用潛力吸引了廣泛的研究關注,然而高熵氧化粉末大多是通過固態反應法製備,而且很少有關於高熵氧化膜的研究報導。除此之外,仍然缺乏形貌調整和壓電相關的應用。
在這項研究中,開發了一種簡便的水熱合成方法,製備 Ba(Ti,Hf,Zr,Fe,Sn)O3粉末以及在FTO基板上製備其奈米柱和奈米顆粒膜,並研究它們的壓電相關應用。樣品(F52)表現出優異的d33(約126.7 pm / V),優於單晶ZnO和其他樣品(F59a、MEO1、MEO2)。這表示Ba(Ti,Hf,Zr,Fe,Sn)O3薄膜在壓電相關應用中的巨大前景。
HEOs have attracted extensive research attention for various applications; however, HEO powders were fabricated through solid-state reactions and few studies on HEO films were reported. Furthermore, morphology tuning and piezoelectric-related applications are still lacking.
In this study, a facile hydrothermal synthesis was developed to fabricate Ba(Zr,Hf,Sn,Fe,Ti)O3 powders, and nanorod and nanoparticle films on FTO substrates. Their piezo-related applications were also studied. The sample (F52) exhibited superior d33 (approximately 126.7 pm/V), outperforming single-crystal ZnO and other samples (F59a, MEO1,MEO2). This implied great promise of Ba(Zr,Hf,Sn,Fe,Ti)O3 films in piezoelectric-related applications.
References
[1] C. Bowen, H. Kim, P. Weaver, and S. Dunn, "Piezoelectric and ferroelectric materials and structures for energy harvesting applications," Energy & Environmental Science, 7(1), 25-44, (2014).
[2] T. Schenk, Formation of ferroelectricity in hafnium oxide based thin films, BoD–Books on Demand, (2017).
[3] A. Safari and E. K. Akdogan, Piezoelectric and acoustic materials for transducer applications, Springer Science & Business Media, (2018).
[4] E. Defaÿ, Integration of ferroelectric and piezoelectric thin films: concepts and applications for microsystems, John Wiley & Sons, (2013).
[5] 朱建國, 電子與光電子材料, 新文京開發, (2002).
[6] K. Uchino, Advanced Piezoelectric Materials: Science and Technology, Elsevier, (2010).
[7] H. Takeda, K. Shimamura, T. Kohno, and T. Fukuda, "Growth and characterization of La3Nb0.5Ga5.5O14 single crystals," Journal of crystal growth, 169(3), 503-508, (1996).
[8] Z. Wang, D. Yuan, X. Cheng, X. Shi, X. Wei, X. Duan, Z. Sun, C. Luan, S. Guo, and D. Xu, "Growth and characterization of Sr3NbGa3Si2O14 single crystals," Journal of crystal growth, 252(1-3), 236-240, (2003).
[9] W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: evolution and future of a technology, Springer Science & Business Media, Vol. 114, (2008).
[10] S. Roberts, "Dielectric and piezoelectric properties of barium titanate," Physical Review, 71(12), 890, (1947).
[11] B. Jaffe, Piezoelectric ceramics, Elsevier, Vol. 3, (2012).
[12] H. Jaffe, "Titanate ceramics for electromechanical purposes," Industrial & Engineering Chemistry, 42(2), 264-268, (1950).
[13] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. Rossetti Jr, and J. Rödel, "BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives," Applied physics reviews, 4(4), 041305, (2017).
[14] S. Butee, K. R. Kambale, A. Ghorpade, A. Halikar, R. Gaikwad, and H. Panda, "Significant improvement in Curie temperature and piezoelectric properties of BaTiO3 with minimum Pb addition," Journal of Asian Ceramic Societies, 7(4), 407-416, (2019).
[15] G. Shirane and K. Suzuki, "Crystal structure of Pb(Zr-Ti)O3," Journal of the Physical Society of Japan, 7(3), 333-333, (1952).
[16] G. Shirane, K. Suzuki, and A. Takeda, "Phase transitions in solid solutions of PbZrO3 and PbTiO3 (II) X-ray study," Journal of the Physical Society of Japan, 7(1), 12-18, (1952).
[17] G. Shirane and A. Takeda, "Phase transitions in solid solutions of PbZrO3 and PbTiO3 (I) small concentrations of PbTiO3," Journal of the Physical Society of Japan, 7(1), 5-11, (1952).
[18] B. Jaffe, R. Roth, and S. Marzullo, "Piezoelectric properties of lead zirconate‐lead titanate solid‐solution ceramics," Journal of Applied Physics, 25(6), 809-810, (1954).
[19] X. Zhu, Piezoelectric ceramic materials: processing, properties, characterization, and applications, Nova Science Publishers, (2010).
[20] R. Patel, "Modelling analysis and optimisation of cantilever piezoelectric energy harvesters," PhD Thesis.University of Nottingham, (2013).
[21] E. Fukada, "History and recent progress in piezoelectric polymers," IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 47(6), 1277-1290, (2000).
[22] H. Kawai, "The Piezoelectricity of Poly (vinylidene Fluoride)," Japanese Journal of Applied Physics, 8, 975, (1969).
[23] H. Li, C. Tian, and Z. D. Deng, "Energy harvesting from low frequency applications using piezoelectric materials," Applied physics reviews, 1(4), 041301, (2014).
[24] S. Mishra, L. Unnikrishnan, S. K. Nayak, and S. Mohanty, "Advances in piezoelectric polymer composites for energy harvesting applications: A systematic review," Macromolecular Materials and Engineering, 304(1), 1800463, (2019).
[25] N. Murayama and H. Obara, "Piezoelectric polymers and their applications," Japanese Journal of Applied Physics, 22(S3), 3, (1983).
[26] J. Harrison and Z. Ounaies, "Piezoelectric polymers," Encyclopedia of polymer science and technology, 3, (2002).
[27] E. K. Akdogan, M. Allahverdi, and A. Safari, "Piezoelectric composites for sensor and actuator applications," IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 52(5), 746-775, (2005).
[28] A. Ballato, "Piezoelectricity - Old Effect, New Thrusts," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 42(5), 916-926, (1995).
[29] R. S. Dahiya and M. Valle, Robotic tactile sensing: technologies and system, Springer Science & Business Media, (2012).
[30] A. Čeponis and D. Mažeika, "Piezoelectric systems as an alternative energy source," Mokslas–Lietuvos ateitis/Science–Future of Lithuania, 6(6), 676-681, (2014).
[31] C.-J. Lin, C. R. Lin, S.-K. Yu, G.-X. Liu, C.-W. Hung, and H.-P. Lin, "Study on Wireless Torque Measurement Using SAW Sensors," Appl. Meas. Syst, 109-136, (2012).
[32] American National Standards Institute, "IEEE Standard on Piezoelectricity," ANSI/IEEE Std 176-1987, 0_1, (1988).
[33] X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, "Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire," Nano letters, 6(12), 2768-2772, (2006).
[34] Z. L. Wang, "Nanopiezotronics," Advanced Materials, 19(6), 889-892, (2007).
[35] X. Wang, W. Peng, C. Pan, and Z. L. Wang, "Piezotronics and piezo-phototronics based on a-axis nano/microwires: fundamentals and applications," Semiconductor Science and Technology, 32(4), 043005, (2017).
[36] Z. L. Wang, Piezotronics and Piezo-Phototronics, Springer Science & Business Media, (2013).
[37] Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang, "Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect," Acs Nano, 4(10), 6285-6291, (2010).
[38] Q. Yang, W. Wang, S. Xu, and Z. L. Wang, "Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect," Nano letters, 11(9), 4012-4017, (2011).
[39] Z. L. Wang, "Piezotronic and piezophototronic effects," The Journal of Physical Chemistry Letters, 1(9), 1388-1393, (2010).
[40] Q. Yang, Y. Liu, C. Pan, J. Chen, X. Wen, and Z. L. Wang, "Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect," Nano letters, 13(2), 607-613, (2013).
[41] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes," Advanced Engineering Materials, 6(5), 299-303, (2004).
[42] B. Cantor, I. Chang, P. Knight, and A. Vincent, "Microstructural development in equiatomic multicomponent alloys," Materials Science and Engineering: A, 375, 213-218, (2004).
[43] M. C. Gao, J.-W. Yeh, P. K. Liaw, and Y. Zhang, High-entropy alloys, Cham: Springer International Publishing, (2016).
[44] K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, "Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys," Acta Materialia, 61(13), 4887-4897, (2013).
[45] S. Ranganathan, "Alloyed pleasures: multimetallic cocktails," Current science, 85(5), 1404-1406, (2003).
[46] Y. Zhou, Y. Zhang, Y. Wang, and G. Chen, "Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties," Applied physics letters, 90(18), 181904, (2007).
[47] X. Wang, Y. Zhang, Y. Qiao, and G. Chen, "Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys," Intermetallics, 15(3), 357-362, (2007).
[48] M.-H. Tsai and J.-W. Yeh, "High-entropy alloys: a critical review," Materials Research Letters, 2(3), 107-123, (2014).
[49] C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, and J.-P. Maria, "Entropy-stabilized oxides," Nature communications, 6, 8485, (2015).
[50] E. Castle, T. Csanádi, S. Grasso, J. Dusza, and M. Reece, "Processing and properties of high-entropy ultra-high temperature carbides," Scientific reports, 8(1), 1-12, (2018).
[51] T. Jin, X. Sang, R. R. Unocic, R. T. Kinch, X. Liu, J. Hu, H. Liu, and S. Dai, "Mechanochemical‐assisted synthesis of high‐entropy metal nitride via a soft urea strategy," Advanced Materials, 30(23), 1707512, (2018).
[52] J. Gild, J. Braun, K. Kaufmann, E. Marin, T. Harrington, P. Hopkins, K. Vecchio, and J. Luo, "A high-entropy silicide:(Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2," Journal of Materiomics, 5(3), 337-343, (2019).
[53] G. Tallarita, R. Licheri, S. Garroni, R. Orru, and G. Cao, "Novel processing route for the fabrication of bulk high-entropy metal diborides," Scripta Materialia, 158, 100-104, (2019).
[54] R.-Z. Zhang, F. Gucci, H. Zhu, K. Chen, and M. J. Reece, "Data-driven design of ecofriendly thermoelectric high-entropy sulfides," Inorganic chemistry, 57(20), 13027-13033, (2018).
[55] A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Zhang, and Y. Jia, "A new class of spinel high-entropy oxides with controllable magnetic properties," Journal of Magnetism and Magnetic Materials, 497, 165884, (2020).
[56] F. Okejiri, Z. Zhang, J. Liu, M. Liu, S. Yang, and S. Dai, "Room‐Temperature Synthesis of High‐Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonication‐Based Method," ChemSusChem, 13(1), 111-115, (2020).
[57] S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, and J. Luo, "A new class of high-entropy perovskite oxides," Scripta Materialia, 142, 116-120, (2018).
[58] A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Yu, and S. Ran, "Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder," Journal of Magnetism and Magnetic Materials, 484, 245-252, (2019).
[59] W. Hong, F. Chen, Q. Shen, Y. H. Han, W. G. Fahrenholtz, and L. Zhang, "Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high‐entropy ceramics," Journal of the American Ceramic Society, 102(4), 2228-2237, (2019).
[60] Z. Grzesik, G. Smoła, M. Miszczak, M. Stygar, J. Dąbrowa, M. Zajusz, K. Świerczek, and M. Danielewski, "Defect structure and transport properties of (Co,Cr,Fe,Mn,Ni)3O4 spinel-structured high entropy oxide," Journal of the European Ceramic Society, 40(3), 835-839, (2020).
[61] J. Gild, M. Samiee, J. L. Braun, T. Harrington, H. Vega, P. E. Hopkins, K. Vecchio, and J. Luo, "High-entropy fluorite oxides," Journal of the European Ceramic Society, 38(10), 3578-3584, (2018).
[62] K. Chen, X. Pei, L. Tang, H. Cheng, Z. Li, C. Li, X. Zhang, and L. An, "A five-component entropy-stabilized fluorite oxide," Journal of the European Ceramic Society, 38(11), 4161-4164, (2018).
[63] A. J. Wright, Q. Wang, S.-T. Ko, K. M. Chung, R. Chen, and J. Luo, "Size disorder as a descriptor for predicting reduced thermal conductivity in medium-and high-entropy pyrochlore oxides," Scripta Materialia, 181, 76-81, (2020).
[64] F. Li, L. Zhou, J.-X. Liu, Y. Liang, and G.-J. Zhang, "High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials," Journal of Advanced Ceramics, 8(4), 576-582, (2019).
[65] D. Bérardan, S. Franger, D. Dragoe, A. K. Meena, and N. Dragoe, "Colossal dielectric constant in high entropy oxides," physica status solidi (RRL)–Rapid Research Letters, 10(4), 328-333, (2016).
[66] A. Sarkar, R. Djenadic, N. J. Usharani, K. P. Sanghvi, V. S. Chakravadhanula, A. S. Gandhi, H. Hahn, and S. S. Bhattacharya, "Nanocrystalline multicomponent entropy stabilised transition metal oxides," Journal of the European Ceramic Society, 37(2), 747-754, (2017).
[67] A. R. West, Solid State Chemistry and Its Applications, Wiley, (1991).
[68] D. Bérardan, S. Franger, A. Meena, and N. Dragoe, "Room temperature lithium superionic conductivity in high entropy oxides," Journal of Materials Chemistry A, 4(24), 9536-9541, (2016).
[69] A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. De Biasi, C. Kübel, T. Brezesinski, S. S. Bhattacharya, and H. Hahn, "High entropy oxides for reversible energy storage," Nature communications, 9(1), 1-9, (2018).
[70] M. R. Chellali, A. Sarkar, S. H. Nandam, S. S. Bhattacharya, B. Breitung, H. Hahn, and L. Velasco, "On the homogeneity of high entropy oxides: An investigation at the atomic scale," Scripta Materialia, 166, 58-63, (2019).
[71] M. Biesuz, L. Spiridigliozzi, G. Dell’agli, M. Bortolotti, and V. M. Sglavo, "Synthesis and sintering of (Mg,Co,Ni,Cu,Zn)O entropy-stabilized oxides obtained by wet chemical methods," Journal of materials science, 53(11), 8074-8085, (2018).
[72] Y. Sharma, B. L. Musico, X. Gao, C. Hua, A. F. May, A. Herklotz, A. Rastogi, D. Mandrus, J. Yan, and H. N. Lee, "Single-crystal high entropy perovskite oxide epitaxial films," Physical Review Materials, 2(6), 060404, (2018).
[73] A. Kirnbauer, C. Spadt, C. M. Koller, S. Kolozsvári, and P. H. Mayrhofer, "High-entropy oxide thin films based on Al–Cr–Nb–Ta–Ti," Vacuum, 168, 108850, (2019).
[74] L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Accardo, D. Frattini, and G. Dell’agli, "Entropy-stabilized oxides owning fluorite structure obtained by hydrothermal treatment," Materials, 13(3), 558, (2020).
[75] D. G. Cahill, S. K. Watson, and R. O. Pohl, "Lower limit to the thermal conductivity of disordered crystals," Physical Review B, 46(10), 6131, (1992).
[76] J. L. Braun, C. M. Rost, M. Lim, A. Giri, D. H. Olson, G. N. Kotsonis, G. Stan, D. W. Brenner, J. P. Maria, and P. E. Hopkins, "Charge‐induced disorder controls the thermal conductivity of entropy‐stabilized oxides," Advanced Materials, 30(51), 1805004, (2018).
[77] Y. Pu, Q. Zhang, R. Li, M. Chen, X. Du, and S. Zhou, "Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic," Applied physics letters, 115(22), 223901, (2019).
[78] S. Zhou, Y. Pu, Q. Zhang, R. Shi, X. Guo, W. Wang, J. Ji, T. Wei, and T. Ouyang, "Microstructure and dielectric properties of high entropy Ba (Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides," Ceramics International, 46(6), 7430-7437, (2020).
[79] P. Meisenheimer, T. Kratofil, and J. Heron, "Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures," Scientific reports, 7(1), 1-6, (2017).
[80] D. Seol, B. Kim, and Y. Kim, "Non-piezoelectric effects in piezoresponse force microscopy," Current Applied Physics, 17(5), 661-674, (2017).
校內:2022-09-01公開