簡易檢索 / 詳目顯示

研究生: 陳奕瑋
Chen, Yi-Wei
論文名稱: 水熱法製備高熵Ba(Ti,Hf,Zr,Fe,Sn)O3奈米柱膜及其壓電相關應用
Facile Hydrothermal Fabrication of High Entropy Ba(Ti,Hf,Zr,Fe,Sn)O3 Nanorod Films on FTO Substrates and Their Piezoelectric-related Applications
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 75
中文關鍵詞: 高熵氧化物Ba(Ti,Hf,Zr,Fe,Sn)O3膜水熱法形貌調整壓電常數
外文關鍵詞: high entropy oxide, Ba(Ti,Hf,Zr,Fe,Sn)O3 film, hydrothermal method, morphology tuning, piezoelectric constant
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高熵氧化物(HEOs)因為眾多的應用潛力吸引了廣泛的研究關注,然而高熵氧化粉末大多是通過固態反應法製備,而且很少有關於高熵氧化膜的研究報導。除此之外,仍然缺乏形貌調整和壓電相關的應用。
    在這項研究中,開發了一種簡便的水熱合成方法,製備 Ba(Ti,Hf,Zr,Fe,Sn)O3粉末以及在FTO基板上製備其奈米柱和奈米顆粒膜,並研究它們的壓電相關應用。樣品(F52)表現出優異的d33(約126.7 pm / V),優於單晶ZnO和其他樣品(F59a、MEO1、MEO2)。這表示Ba(Ti,Hf,Zr,Fe,Sn)O3薄膜在壓電相關應用中的巨大前景。

    HEOs have attracted extensive research attention for various applications; however, HEO powders were fabricated through solid-state reactions and few studies on HEO films were reported. Furthermore, morphology tuning and piezoelectric-related applications are still lacking.
    In this study, a facile hydrothermal synthesis was developed to fabricate Ba(Zr,Hf,Sn,Fe,Ti)O3 powders, and nanorod and nanoparticle films on FTO substrates. Their piezo-related applications were also studied. The sample (F52) exhibited superior d33 (approximately 126.7 pm/V), outperforming single-crystal ZnO and other samples (F59a, MEO1,MEO2). This implied great promise of Ba(Zr,Hf,Sn,Fe,Ti)O3 films in piezoelectric-related applications.

    Contents 摘要 I Abstract II 致謝 III Contents IV Figure Contents VII Table Contents XI Equation Contents XII Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Pizeoelectric materials 1 1.1.1.1 Piezoelectric single crystals 4 1.1.1.2 Piezoelectric polycrystals 4 1.1.1.3 Piezoelectric polymers 6 1.1.1.4 Piezoelectric composites 9 1.1.2 Related properties 11 1.1.2.1 Piezoelectric effect 11 1.1.2.2 Piezotronic effect 13 1.1.2.3 Piezophototronic effect 17 1.1.3 High entropy materials 19 1.1.3.1 High entropy alloys (HEAs) 19 1.1.3.2 High entropy oxides (HEOs) 26 1.2 Motivation and objective 36 Chapter 2 Experimental methods 37 2.1 Materials 37 2.2 Equipment 38 2.3 Experimental procedures 42 2.3.1 Substrate cleaning 42 2.3.2 Spin coating process 43 2.3.3 Hydrothermal synthesis process 44 2.4 Characterization 45 2.4.1 X-ray Diffraction (XRD) 45 2.4.2 Scanning Electron Microscopy (SEM) 46 2.4.3 Transmission Electron Microscopy (TEM) 47 2.4.4 Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) 48 2.4.5 Piezoelectric Force Microscopy (PFM) 49 Chapter 3 Results and discussion 50 3.1 High entropy Ba(Ti,Hf,Zr,Fe,Sn)O3 powders 50 3.2 Equimolar composition tuning 51 3.3 High entropy Ba(Ti,Hf,Zr,Fe,Sn)O3 films 52 3.3.1 pH effect 52 3.3.2 Substrate effect 52 3.3.3 Various approaches to enhance density 53 3.3.3.1 Two-step hydrothermal method 53 3.3.3.2 Spin coating and hydrothermal method 54 3.4 Morphology tuning 56 3.5 TEM results 59 3.6 PFM results 63 Chapter 4 Conclusions 67 References 68

    References

    [1] C. Bowen, H. Kim, P. Weaver, and S. Dunn, "Piezoelectric and ferroelectric materials and structures for energy harvesting applications," Energy & Environmental Science, 7(1), 25-44, (2014).
    [2] T. Schenk, Formation of ferroelectricity in hafnium oxide based thin films, BoD–Books on Demand, (2017).
    [3] A. Safari and E. K. Akdogan, Piezoelectric and acoustic materials for transducer applications, Springer Science & Business Media, (2018).
    [4] E. Defaÿ, Integration of ferroelectric and piezoelectric thin films: concepts and applications for microsystems, John Wiley & Sons, (2013).
    [5] 朱建國, 電子與光電子材料, 新文京開發, (2002).
    [6] K. Uchino, Advanced Piezoelectric Materials: Science and Technology, Elsevier, (2010).
    [7] H. Takeda, K. Shimamura, T. Kohno, and T. Fukuda, "Growth and characterization of La3Nb0.5Ga5.5O14 single crystals," Journal of crystal growth, 169(3), 503-508, (1996).
    [8] Z. Wang, D. Yuan, X. Cheng, X. Shi, X. Wei, X. Duan, Z. Sun, C. Luan, S. Guo, and D. Xu, "Growth and characterization of Sr3NbGa3Si2O14 single crystals," Journal of crystal growth, 252(1-3), 236-240, (2003).
    [9] W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: evolution and future of a technology, Springer Science & Business Media, Vol. 114, (2008).
    [10] S. Roberts, "Dielectric and piezoelectric properties of barium titanate," Physical Review, 71(12), 890, (1947).
    [11] B. Jaffe, Piezoelectric ceramics, Elsevier, Vol. 3, (2012).
    [12] H. Jaffe, "Titanate ceramics for electromechanical purposes," Industrial & Engineering Chemistry, 42(2), 264-268, (1950).
    [13] M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. Rossetti Jr, and J. Rödel, "BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives," Applied physics reviews, 4(4), 041305, (2017).
    [14] S. Butee, K. R. Kambale, A. Ghorpade, A. Halikar, R. Gaikwad, and H. Panda, "Significant improvement in Curie temperature and piezoelectric properties of BaTiO3 with minimum Pb addition," Journal of Asian Ceramic Societies, 7(4), 407-416, (2019).
    [15] G. Shirane and K. Suzuki, "Crystal structure of Pb(Zr-Ti)O3," Journal of the Physical Society of Japan, 7(3), 333-333, (1952).
    [16] G. Shirane, K. Suzuki, and A. Takeda, "Phase transitions in solid solutions of PbZrO3 and PbTiO3 (II) X-ray study," Journal of the Physical Society of Japan, 7(1), 12-18, (1952).
    [17] G. Shirane and A. Takeda, "Phase transitions in solid solutions of PbZrO3 and PbTiO3 (I) small concentrations of PbTiO3," Journal of the Physical Society of Japan, 7(1), 5-11, (1952).
    [18] B. Jaffe, R. Roth, and S. Marzullo, "Piezoelectric properties of lead zirconate‐lead titanate solid‐solution ceramics," Journal of Applied Physics, 25(6), 809-810, (1954).
    [19] X. Zhu, Piezoelectric ceramic materials: processing, properties, characterization, and applications, Nova Science Publishers, (2010).
    [20] R. Patel, "Modelling analysis and optimisation of cantilever piezoelectric energy harvesters," PhD Thesis.University of Nottingham, (2013).
    [21] E. Fukada, "History and recent progress in piezoelectric polymers," IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 47(6), 1277-1290, (2000).
    [22] H. Kawai, "The Piezoelectricity of Poly (vinylidene Fluoride)," Japanese Journal of Applied Physics, 8, 975, (1969).
    [23] H. Li, C. Tian, and Z. D. Deng, "Energy harvesting from low frequency applications using piezoelectric materials," Applied physics reviews, 1(4), 041301, (2014).
    [24] S. Mishra, L. Unnikrishnan, S. K. Nayak, and S. Mohanty, "Advances in piezoelectric polymer composites for energy harvesting applications: A systematic review," Macromolecular Materials and Engineering, 304(1), 1800463, (2019).
    [25] N. Murayama and H. Obara, "Piezoelectric polymers and their applications," Japanese Journal of Applied Physics, 22(S3), 3, (1983).
    [26] J. Harrison and Z. Ounaies, "Piezoelectric polymers," Encyclopedia of polymer science and technology, 3, (2002).
    [27] E. K. Akdogan, M. Allahverdi, and A. Safari, "Piezoelectric composites for sensor and actuator applications," IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 52(5), 746-775, (2005).
    [28] A. Ballato, "Piezoelectricity - Old Effect, New Thrusts," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, 42(5), 916-926, (1995).
    [29] R. S. Dahiya and M. Valle, Robotic tactile sensing: technologies and system, Springer Science & Business Media, (2012).
    [30] A. Čeponis and D. Mažeika, "Piezoelectric systems as an alternative energy source," Mokslas–Lietuvos ateitis/Science–Future of Lithuania, 6(6), 676-681, (2014).
    [31] C.-J. Lin, C. R. Lin, S.-K. Yu, G.-X. Liu, C.-W. Hung, and H.-P. Lin, "Study on Wireless Torque Measurement Using SAW Sensors," Appl. Meas. Syst, 109-136, (2012).
    [32] American National Standards Institute, "IEEE Standard on Piezoelectricity," ANSI/IEEE Std 176-1987, 0_1, (1988).
    [33] X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, "Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire," Nano letters, 6(12), 2768-2772, (2006).
    [34] Z. L. Wang, "Nanopiezotronics," Advanced Materials, 19(6), 889-892, (2007).
    [35] X. Wang, W. Peng, C. Pan, and Z. L. Wang, "Piezotronics and piezo-phototronics based on a-axis nano/microwires: fundamentals and applications," Semiconductor Science and Technology, 32(4), 043005, (2017).
    [36] Z. L. Wang, Piezotronics and Piezo-Phototronics, Springer Science & Business Media, (2013).
    [37] Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang, "Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect," Acs Nano, 4(10), 6285-6291, (2010).
    [38] Q. Yang, W. Wang, S. Xu, and Z. L. Wang, "Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect," Nano letters, 11(9), 4012-4017, (2011).
    [39] Z. L. Wang, "Piezotronic and piezophototronic effects," The Journal of Physical Chemistry Letters, 1(9), 1388-1393, (2010).
    [40] Q. Yang, Y. Liu, C. Pan, J. Chen, X. Wen, and Z. L. Wang, "Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect," Nano letters, 13(2), 607-613, (2013).
    [41] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes," Advanced Engineering Materials, 6(5), 299-303, (2004).
    [42] B. Cantor, I. Chang, P. Knight, and A. Vincent, "Microstructural development in equiatomic multicomponent alloys," Materials Science and Engineering: A, 375, 213-218, (2004).
    [43] M. C. Gao, J.-W. Yeh, P. K. Liaw, and Y. Zhang, High-entropy alloys, Cham: Springer International Publishing, (2016).
    [44] K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, "Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys," Acta Materialia, 61(13), 4887-4897, (2013).
    [45] S. Ranganathan, "Alloyed pleasures: multimetallic cocktails," Current science, 85(5), 1404-1406, (2003).
    [46] Y. Zhou, Y. Zhang, Y. Wang, and G. Chen, "Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties," Applied physics letters, 90(18), 181904, (2007).
    [47] X. Wang, Y. Zhang, Y. Qiao, and G. Chen, "Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys," Intermetallics, 15(3), 357-362, (2007).
    [48] M.-H. Tsai and J.-W. Yeh, "High-entropy alloys: a critical review," Materials Research Letters, 2(3), 107-123, (2014).
    [49] C. M. Rost, E. Sachet, T. Borman, A. Moballegh, E. C. Dickey, D. Hou, J. L. Jones, S. Curtarolo, and J.-P. Maria, "Entropy-stabilized oxides," Nature communications, 6, 8485, (2015).
    [50] E. Castle, T. Csanádi, S. Grasso, J. Dusza, and M. Reece, "Processing and properties of high-entropy ultra-high temperature carbides," Scientific reports, 8(1), 1-12, (2018).
    [51] T. Jin, X. Sang, R. R. Unocic, R. T. Kinch, X. Liu, J. Hu, H. Liu, and S. Dai, "Mechanochemical‐assisted synthesis of high‐entropy metal nitride via a soft urea strategy," Advanced Materials, 30(23), 1707512, (2018).
    [52] J. Gild, J. Braun, K. Kaufmann, E. Marin, T. Harrington, P. Hopkins, K. Vecchio, and J. Luo, "A high-entropy silicide:(Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2," Journal of Materiomics, 5(3), 337-343, (2019).
    [53] G. Tallarita, R. Licheri, S. Garroni, R. Orru, and G. Cao, "Novel processing route for the fabrication of bulk high-entropy metal diborides," Scripta Materialia, 158, 100-104, (2019).
    [54] R.-Z. Zhang, F. Gucci, H. Zhu, K. Chen, and M. J. Reece, "Data-driven design of ecofriendly thermoelectric high-entropy sulfides," Inorganic chemistry, 57(20), 13027-13033, (2018).
    [55] A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Zhang, and Y. Jia, "A new class of spinel high-entropy oxides with controllable magnetic properties," Journal of Magnetism and Magnetic Materials, 497, 165884, (2020).
    [56] F. Okejiri, Z. Zhang, J. Liu, M. Liu, S. Yang, and S. Dai, "Room‐Temperature Synthesis of High‐Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonication‐Based Method," ChemSusChem, 13(1), 111-115, (2020).
    [57] S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, and J. Luo, "A new class of high-entropy perovskite oxides," Scripta Materialia, 142, 116-120, (2018).
    [58] A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Yu, and S. Ran, "Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder," Journal of Magnetism and Magnetic Materials, 484, 245-252, (2019).
    [59] W. Hong, F. Chen, Q. Shen, Y. H. Han, W. G. Fahrenholtz, and L. Zhang, "Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O high‐entropy ceramics," Journal of the American Ceramic Society, 102(4), 2228-2237, (2019).
    [60] Z. Grzesik, G. Smoła, M. Miszczak, M. Stygar, J. Dąbrowa, M. Zajusz, K. Świerczek, and M. Danielewski, "Defect structure and transport properties of (Co,Cr,Fe,Mn,Ni)3O4 spinel-structured high entropy oxide," Journal of the European Ceramic Society, 40(3), 835-839, (2020).
    [61] J. Gild, M. Samiee, J. L. Braun, T. Harrington, H. Vega, P. E. Hopkins, K. Vecchio, and J. Luo, "High-entropy fluorite oxides," Journal of the European Ceramic Society, 38(10), 3578-3584, (2018).
    [62] K. Chen, X. Pei, L. Tang, H. Cheng, Z. Li, C. Li, X. Zhang, and L. An, "A five-component entropy-stabilized fluorite oxide," Journal of the European Ceramic Society, 38(11), 4161-4164, (2018).
    [63] A. J. Wright, Q. Wang, S.-T. Ko, K. M. Chung, R. Chen, and J. Luo, "Size disorder as a descriptor for predicting reduced thermal conductivity in medium-and high-entropy pyrochlore oxides," Scripta Materialia, 181, 76-81, (2020).
    [64] F. Li, L. Zhou, J.-X. Liu, Y. Liang, and G.-J. Zhang, "High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials," Journal of Advanced Ceramics, 8(4), 576-582, (2019).
    [65] D. Bérardan, S. Franger, D. Dragoe, A. K. Meena, and N. Dragoe, "Colossal dielectric constant in high entropy oxides," physica status solidi (RRL)–Rapid Research Letters, 10(4), 328-333, (2016).
    [66] A. Sarkar, R. Djenadic, N. J. Usharani, K. P. Sanghvi, V. S. Chakravadhanula, A. S. Gandhi, H. Hahn, and S. S. Bhattacharya, "Nanocrystalline multicomponent entropy stabilised transition metal oxides," Journal of the European Ceramic Society, 37(2), 747-754, (2017).
    [67] A. R. West, Solid State Chemistry and Its Applications, Wiley, (1991).
    [68] D. Bérardan, S. Franger, A. Meena, and N. Dragoe, "Room temperature lithium superionic conductivity in high entropy oxides," Journal of Materials Chemistry A, 4(24), 9536-9541, (2016).
    [69] A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. De Biasi, C. Kübel, T. Brezesinski, S. S. Bhattacharya, and H. Hahn, "High entropy oxides for reversible energy storage," Nature communications, 9(1), 1-9, (2018).
    [70] M. R. Chellali, A. Sarkar, S. H. Nandam, S. S. Bhattacharya, B. Breitung, H. Hahn, and L. Velasco, "On the homogeneity of high entropy oxides: An investigation at the atomic scale," Scripta Materialia, 166, 58-63, (2019).
    [71] M. Biesuz, L. Spiridigliozzi, G. Dell’agli, M. Bortolotti, and V. M. Sglavo, "Synthesis and sintering of (Mg,Co,Ni,Cu,Zn)O entropy-stabilized oxides obtained by wet chemical methods," Journal of materials science, 53(11), 8074-8085, (2018).
    [72] Y. Sharma, B. L. Musico, X. Gao, C. Hua, A. F. May, A. Herklotz, A. Rastogi, D. Mandrus, J. Yan, and H. N. Lee, "Single-crystal high entropy perovskite oxide epitaxial films," Physical Review Materials, 2(6), 060404, (2018).
    [73] A. Kirnbauer, C. Spadt, C. M. Koller, S. Kolozsvári, and P. H. Mayrhofer, "High-entropy oxide thin films based on Al–Cr–Nb–Ta–Ti," Vacuum, 168, 108850, (2019).
    [74] L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Accardo, D. Frattini, and G. Dell’agli, "Entropy-stabilized oxides owning fluorite structure obtained by hydrothermal treatment," Materials, 13(3), 558, (2020).
    [75] D. G. Cahill, S. K. Watson, and R. O. Pohl, "Lower limit to the thermal conductivity of disordered crystals," Physical Review B, 46(10), 6131, (1992).
    [76] J. L. Braun, C. M. Rost, M. Lim, A. Giri, D. H. Olson, G. N. Kotsonis, G. Stan, D. W. Brenner, J. P. Maria, and P. E. Hopkins, "Charge‐induced disorder controls the thermal conductivity of entropy‐stabilized oxides," Advanced Materials, 30(51), 1805004, (2018).
    [77] Y. Pu, Q. Zhang, R. Li, M. Chen, X. Du, and S. Zhou, "Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic," Applied physics letters, 115(22), 223901, (2019).
    [78] S. Zhou, Y. Pu, Q. Zhang, R. Shi, X. Guo, W. Wang, J. Ji, T. Wei, and T. Ouyang, "Microstructure and dielectric properties of high entropy Ba (Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides," Ceramics International, 46(6), 7430-7437, (2020).
    [79] P. Meisenheimer, T. Kratofil, and J. Heron, "Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures," Scientific reports, 7(1), 1-6, (2017).
    [80] D. Seol, B. Kim, and Y. Kim, "Non-piezoelectric effects in piezoresponse force microscopy," Current Applied Physics, 17(5), 661-674, (2017).

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE