| 研究生: |
呂靖安 Lu, Ching-An |
|---|---|
| 論文名稱: |
縮減間隙之奈米雙菇結構應用於膀胱癌指標之非標記檢測 Plasmonic Dimer-Mushroom with Reduced Nanogap for Label-Free Detection of Bladder Cancer Biomarkers |
| 指導教授: |
林俊宏
Lin, Chun-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 侷域化表面電漿共振 、折射率感測器 、非標籤分子偵測 、膀胱癌尿液檢體 |
| 外文關鍵詞: | Localized surface plasmon resonance, refractive index sensor, label-free sensing, bladder cancer |
| 相關次數: | 點閱:154 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出利用奈米轉印技術可以簡單且低成本的製作具可壓縮狹縫之奈米雙菇結構。結合了狹縫共振與法諾共振,我們提出了具備高FOM值且同時具備侷域性電場的偵測器,用以解決以往的研究中無法良好運用偵測器來進行非標籤分子的偵測。而為了有更好的量測品質,我們也利用了嚴格耦合波分析法來針對結構的參數進行調整,最終選定狹縫為20 nm和長寬比為1.67的奈米雙菇結構,並將其應用於折射率偵測及非標籤分子偵測。
膀胱癌近年來為國內男性罹患癌症的前十名,然而現今在診斷膀胱癌的技術多以膀胱鏡為主,但膀胱鏡的診斷屬於侵入式的偵測,除了膀胱鏡的侵入所造成的不適感外,在診斷後也可能引起患者尿路的感染風險。除了膀胱鏡檢測外,也有核磁共振等較為昂貴的醫療設備可以進行診斷,但這類設備最大的問題便是其耗時且昂貴導致難以廣泛利用,因此如何開發便宜且非侵入式的偵測系統就顯得相當重要。
近年來有其他研究指出在膀胱癌患者的尿液檢體中具有可以針對膀胱癌進行辨別的指標分子玻尿酸(hyaluronic acid,HA)及玻尿酸酶(Hyaluronidase,HAase),透過對患者尿液中的指標分子含量分析來達到膀胱癌的診斷。目前本研究所提出的奈米雙菇結構已能在偵測0.5 mg/mL的HA檢體中能得到6 nm的訊號變化;在偵測400 U/mL HAase也能有17 nm的訊號變化,在開發膀胱癌的非侵入式的偵測系統中具有相當大的潛力。
Surface Plasmon Resonance (SPR) sensor have been widely used for chemical and biological sensing due to the high sensitivity to the refractive index of the dielectric environment. Previously, a lot of research indicated plasmonic structure with Fano resonance for enhancing the FOM. However, it can’t have the producing results in label-free sensing after having this reply. The reason is that localized electric field distribution cannot be generated for label-free sensing. Therefore, we proposed the nano dimer-mushroom array (NDMA) for the sensor with the nanogap for producing the localized electric field distribution and the coupling between resonances for enhancing the FOM. Its sensitivity can reach 640.32 nm/RIU and the FOM can be boosted up to 49.3. In label-free sensing, we investigated HA and HAase, the biomarkers of bladder cancer, with 6 nm and 16 nm resonance shift.
[1] A. P. Turner, "Biosensors: sense and sensibility," Chem Soc Rev, vol. 42, pp. 3184-96, Apr 21 2013.
[2] A. G. Brolo, "Plasmonics for future biosensors," Nature Photonics, vol. 6, pp. 709-713, 2012.
[3] C.-C. Liang, W.-H. Chang, and C.-H. Lin, "Nanotransfer printing of plasmonic nano-pleat arrays with ultra-reduced nanocavity width using perfluoropolyether molds," Journal of Materials Chemistry C, vol. 4, pp. 4491-4504, 2016.
[4] S. C. Yang, J. L. Hou, A. Finn, A. Kumar, Y. Ge, and W. J. Fischer, "Synthesis of multifunctional plasmonic nanopillar array using soft thermal nanoimprint lithography for highly sensitive refractive index sensing," Nanoscale, vol. 7, pp. 5760-6, Mar 19 2015.
[5] Q. Zhang, P. Hu, and C. Liu, "Giant-enhancement of extraordinary optical transmission through nanohole arrays blocked by plasmonic gold mushroom caps," Optics Communications, vol. 335, pp. 231-236, 2015.
[6] G. C. Li, Y. L. Zhang, and D. Y. Lei, "Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy," Nanoscale, vol. 8, pp. 7119-26, Apr 7 2016.
[7] K. N. Kanipe, P. P. Chidester, G. D. Stucky, and M. Moskovits, "Large Format Surface-Enhanced Raman Spectroscopy Substrate Optimized for Enhancement and Uniformity," ACS Nano, vol. 10, pp. 7566-71, Aug 23 2016.
[8] Y. Lee, J. Lee, T. K. Lee, J. Park, M. Ha, S. K. Kwak, H. Ko, "Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors," ACS Appl Mater Interfaces, vol. 7, pp. 26421-9, Dec 9 2015.
[9] B. Ai, L. Wang, H. Mohwald, Y. Yu, and G. Zhang, "Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays," Nanoscale, vol. 7, pp. 2317-24, Feb 14 2015.
[10] S. S. Acimovic, M. P. Kreuzer, M. U. Gonzalez, and R. Quidant, "Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing," ACS Nano, vol. 3, pp. 1231-7, May 26 2009.
[11] V. B. Lokeshwar, C. Öbek, M. S. Soloway, and N. L. Block, "Tumor-associated hyaluronic acid: a new sensitive and specific urine marker for bladder cancer," Cancer research, vol. 57, pp. 773-777, 1997.
[12] V. B. Lokeshwar, C. Öbek, H. T. Pham, D. Wei, M. J. Young, R. C. Duncan, M. S. Soloway, N. L. Block, "Urinary hyaluronic acid and hyaluronidase: markers for bladder cancer detection and evaluation of grade," The Journal of urology, vol. 163, pp. 348-356, 2000.
[13] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," nature, vol. 424, p. 824, 2003.
[14] T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, vol. 391, p. 667, 1998.
[15] H. Gao, J. McMahon, M. Lee, J. Henzie, S. Gray, G. Schatz, T. Odom, "Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays," Optics express, vol. 17, pp. 2334-2340, 2009.
[16] O. Krasnykov, A. Karabchevsky, A. Shalabney, M. Auslender, and I. Abdulhalim, "Sensor with increased sensitivity based on enhanced optical transmission in the infrared," Optics Communications, vol. 284, pp. 1435-1438, 2011.
[17] K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu Rev Phys Chem, vol. 58, pp. 267-97, 2007.
[18] P. Biagioni, J. S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Rep Prog Phys, vol. 75, p. 024402, Feb 2012.
[19] J. R. Fan, J. Zhu, W. G. Wu, and Y. Huang, "Plasmonic Metasurfaces Based on Nanopin-Cavity Resonator for Quantitative Colorimetric Ricin Sensing," Small, vol. 13, Jan 2017.
[20] C. S. Law, G. M. Sylvia, M. Nemati, J. Yu, D. Losic, A. D. Abell, A. Santos, "Engineering of Surface Chemistry for Enhanced Sensitivity in Nanoporous Interferometric Sensing Platforms," ACS Appl Mater Interfaces, vol. 9, pp. 8929-8940, Mar 15 2017.
[21] "<2012_Enhancing Surface Plasmon Detection Using Template-Stripped Gold Nanoslit Arrays on Plastic Films.pdf>."
[22] A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Reviews of Modern Physics, vol. 82, pp. 2257-2298, 2010.
[23] Z.-J. Yang, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, Z.-H. Hao, and Q.-Q. Wang, "Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers," Optics letters, vol. 36, pp. 1542-1544, 2011.
[24] K. L. Lee, J. B. Huang, J. W. Chang, S. H. Wu, and P. K. Wei, "Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays," Sci Rep, vol. 5, p. 8547, Feb 24 2015.
[25] N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett, vol. 10, pp. 1103-7, Apr 14 2010.
[26] K. Lodewijks, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, "Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements," Nano letters, vol. 12, pp. 1655-1659, 2012.
[27] W.-Y. Chen, C.-H. Lin, and W.-T. Chen, "Plasmonic phase transition and phase retardation: essential optical characteristics of localized surface plasmon resonance," Nanoscale, vol. 5, pp. 9950-9956, 2013.
[28] R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Lank, A. Dmitriev, P. Vavassori, I. V. Shvets, M. Kall, "Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces," Nanoscale, vol. 8, pp. 10576-81, May 19 2016.
[29] P. Offermans, M. C. Schaafsma, S. R. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, J. Gómez Rivas, "Universal scaling of the figure of merit of plasmonic sensors," ACS nano, vol. 5, pp. 5151-5157, 2011.
[30] Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, "Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit," Nat Commun, vol. 4, p. 2381, 2013.
[31] J. Lee, S. Sung, J. H. Choi, S. C. Eom, N. A. Mortensen, and J. H. Shin, "Ultra sub-wavelength surface plasmon confinement using air-gap, sub-wavelength ring resonator arrays," Sci Rep, vol. 6, p. 22305, Feb 29 2016.
[32] S. Dinda, V. Suresh, P. Thoniyot, A. Balcytis, S. Juodkazis, and S. Krishnamoorthy, "Engineering 3D Nanoplasmonic Assemblies for High Performance Spectroscopic Sensing," ACS Appl Mater Interfaces, vol. 7, pp. 27661-6, Dec 23 2015.
[33] M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, S, X, Wang, "High-density 2D homo-and hetero-plasmonic dimers with universal sub-10-nm gaps," ACS nano, vol. 9, pp. 9331-9339, 2015.
[34] C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis," Microelectronic Engineering, vol. 83, pp. 1798-1804, 2006.
[35] E. D. Palik, "Handbook of Optical Constants of Solids (Academic, Orlando, 1985)," Google Scholar, pp. 286-297.
[36] J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, N. J. Halas, "Close encounters between two nanoshells," Nano letters, vol. 8, pp. 1212-1218, 2008.
[37] P. Biagioni, J.-S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Reports on Progress in Physics, vol. 75, p. 024402, 2012.
[38] S.-C. Lo, E.-H. Lin, P.-K. Wei, and W.-S. Tsai, "A compact imaging spectroscopic system for biomolecular detections on plasmonic chips," Analyst, vol. 141, pp. 6126-6132, 2016.
[39] W. Li, X. Jiang, J. Xue, Z. Zhou, and J. Zhou, "Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein," Biosensors and Bioelectronics, vol. 68, pp. 468-474, 2015.
[40] A. H. Thilsted, J. Y. Pan, K. Wu, K. Zór, T. Rindzevicius, M. S. Schmidt, A. Boisen, "Lithography‐Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR‐Based Sensing," Small, vol. 12, pp. 6745-6752, 2016.
校內:2023-07-30公開