簡易檢索 / 詳目顯示

研究生: 黎秀蓉
Li, Siou-Rong
論文名稱: 不同溼度情形下三氯矽甲烷逸散及燃燒時之鹽酸氣膠及酸性氣體逸散特徵
Emissions of acid aerosols and gases associated with the releasing and burning of trichlorosilane under various humidity conditions
指導教授: 蔡朋枝
Tsai, Perng-Jy
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 62
中文關鍵詞: 三氯矽甲烷逸散燃燒鹽酸氣膠酸性氣體排放係數排放率
外文關鍵詞: Trichlorosilane, Releasing, Burning, Acid aerosols, Acid gases, Emission factor, Emission rate
相關次數: 點閱:73下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討半導體及光電產業製程中所使用之三氯矽甲烷 (Trichlorosilane, TCS),在逸散及燃燒時所產生之鹽酸氣膠 (HCl-p)、鹽酸氣體 (HCl-g)及氯氣 (Cl2)其排放特徵。本研究首先建置一暴露腔,確認其環境控制條件 (ACH= 6,RH= 44.0 %、57.3 %、65.5 %、79.8 %及 89.8 %)之穩定性及均勻性。本研究針對TCS所產生之HCl-p係利用微米及奈米微孔均勻沉積衝擊器 (Nano- and Micro-Orifice Uniform Deposit Impactor, Nano-MOUDI及MOUDI)實施粒徑分布採樣,HCl-g及Cl2係依據NIOSH 7903及NIOSH 6011分別利用矽膠管 (Silica gel tube)及銀膜濾紙 (Silver membrane filter)進行樣本採集。HCl-p、HCl-g及Cl2均以離子層析儀 (Ion chromatography-electron capture detection, IC-ECD)進行分析。結果發現:(1) TCS逸散時主要生成物為HCl-p (4.72×103 ~ 5.68×103 mg/m3),HCl-g (0.714×103 ~ 0.970×103 mg/m3)次之;TCS燃燒時主要生成物亦為HCl-p (1.30×105 ~ 1.46×105 mg/m3),其次依序為HCl-g (6.38×103 ~ 11.3×103 mg/m3)及Cl2 (1.91×103 ~ 2.18×103 mg/m3);(2) TCS逸散時所產生HCl-p,若經由呼吸進入人體,穿透於肺泡區之比例 (91.6 ~ 98.1 %) >胸腔區 (1.3 ~ 6.3 %) >頭區 (0.7 ~ 3.8 %)。而在TCS燃燒時,HCl-p於肺泡區之比例 (82.7 ~ 88.8 %) >胸腔區 (6.5 ~ 10.7 %) >頭區 (4.7 ~ 6.7 %);(3) 在不同相對溼度進行TCS逸散測試下,HCl-p及HCl-g之排放係數 (EF)分別為681.9 ~ 704.7 mg/g TCS及92.8 ~ 126.7 mg/g TCS,而排放率 (ER)分別為228.3 ~ 286.5 mg/min及30.5 ~ 48.5 mg/min;在不同相對溼度進行TCS燃燒測試下,HCl-p、HCl-g及Cl2之EF分別為713.7 ~ 741.7 mg/g TCS、37.2 ~ 56.3 mg/g TCS及9.50 ~ 11.6 mg/g TCS;ER分別為6715.7 ~ 7404.1 mg/min、338.1 ~ 584.0 mg/min及98.6 ~ 112.7 mg/min。本研究建議於TCS作業場所應置備全面體複合式之呼吸防護具於緊急應變時使用,以防止TCS洩漏及燃燒產生HCl-p、HCl-g及Cl2所可能造成勞工之健康危害。

    This study investigated the emission characteristics of acid aerosols (HCl-p), acid gases (HCl-g) and chlorine (Cl2) during the releasing and burning of trichlorosilane (TCS). An exposure chamber was established and its uniformity and stability were tested under various test conditions prior to conducting experimental campaigns. Five relative humidity conditions (RH= 44.0 %, 57.3 %, 65.5 %, 79.8 % and 89.8 %) were selected and the air exchange rate (ACH) was specified at 6. Each test condition was repeated three times and HCl-p, HCl-g and Cl2 were collected during each test run. HCl-p were collected using Nano- and Micro-Orifice Uniform Deposit Impactor (i.e., Nano-MOUDI and MOUDI). HCl-g and Cl2 were sampled per NIOSH method 7903 and 6011, respectively. All samples were analysed by ion chromatography-electron capture detection, IC-ECD. We found that (1) The concentration of HCl-p and HCl-g were 4.72×103-5.68×103 mg/m3 and 0.714×103-0.970×103 mg/m3, respectively during the TCS releasing process. During the TCS burning process, the concentration of HCl-p, HCl-g and Cl2 were 1.30×105-1.46×105 mg/m3, 6.38×103-11.3×103 mg/m3 and 1.91×103-2.18×103 mg/m3, respectively; (2) the deposition of the resultant HCl-p in the respiratory tract was consistently found as alveolar region >tracheobronchial region >head region in five selected RH testing conditions; (3) during the TCS releasing process, the emission factor (EF) of HCl-p and HCl-g fell to the range 681.9-704.7 mg/g TCS and 92.8-126.7 mg/g TCS, respectively. The emission rate (ER) of HCl-p and HCl-g fell to the range 228.3-286.5 mg/min and 30.5-48.5 mg/min, respectively; During the TCS burning process, the EF of HCl-p, HCl-g and Cl2 fell to the range 713.7-741.7 mg/g TCS, 37.2-56.3 mg/g TCS and 9.50-11.6 mg/g TCS, respectively. The ER of HCl-p, HCl-g and Cl2 fell to the range 6715.7-7404.1 mg/min, 338.1-584.0 mg/min and 98.6-112.7 mg/min, respectively. High concentrations of HCl-p, HCl-g and Cl2 found in the present study suggests that full-faced respirators with composite functions for the removal of HCl-p, HCl-g and Cl2 should be used for workers during emergency response processes.

    第1章 緒論1 1.1 研究背景與動機1 1.2 研究目的1 1.3 研究意義與重要性2 第2章 文獻回顧3 2.1 TCS之物化特性3 2.2 TCS外洩意外事故3 2.3 酸性氣膠之健康危害5 2.4 現行酸性氣體及酸性氣膠之暴露評估6 第3章 研究架構與方法9 3.1 研究架構9 3.2 研究方法及步驟9 3.2.1 暴露腔之建立9 3.2.2 TCS盛液盤之高度、採樣時間及採樣時機之估算11 3.2.3 採樣方法15 3.2.4 樣本分析16 3.2.5 數據分析17 第4章 研究品質控制25 4.1 鹽酸氣膠及酸性氣體採樣及分析之品質控制25 4.1.1 採樣器25 4.1.2 標準品檢量線之建立25 4.1.3 標準品回收率之準確度與精密度25 4.1.4 方法偵測極限之測定26 第5章 結果與討論31 5.1 暴露腔穩定性及均勻性測試評估31 5.1.1 暴露腔燃燒測試區風速之穩定性評估31 5.1.2 暴露腔燃燒測試區相對溼度之穩定性評估31 5.1.3 暴露腔燃燒測試區風速之均勻性評估31 5.2 三氯矽甲烷在不同相對溼度下逸散時之排放特徵32 5.2.1 三氯矽甲烷在不同相對溼度下逸散時,鹽酸氣膠及鹽酸氣體濃度變化 情形32 5.2.2 三氯矽甲烷在不同相對溼度下逸散時,鹽酸氣膠之粒徑分布及其對勞 工呼吸道不同區域之暴露情形33 5.2.3 三氯矽甲烷在不同相對溼度下逸散時,鹽酸氣膠及鹽酸氣體之排放係 數及排放率34 5.3 三氯矽甲烷在不同相對溼度下燃燒時之排放特徵34 5.3.1 三氯矽甲烷在不同相對溼度下燃燒時,鹽酸氣膠、鹽酸氣體及氯氣之 濃度變化情形34 5.3.2 三氯矽甲烷在不同相對溼度下燃燒時,鹽酸氣膠之粒徑分布及其對勞 工呼吸道不同區域之暴露情形36 5.3.3 三氯矽甲烷在不同相對溼度下燃燒時,鹽酸氣膠、鹽酸氣體及氯氣之 排放係數及排放率36 5.4 不同相對溼度下TCS逸散及燃燒時之排放係數及排放率比較37 5.4.1 不同相對溼度下TCS逸散及燃燒時之排放係數比較37 5.4.2 不同相對溼度下TCS逸散及燃燒時之排放率比較37 第6章 結論與建議57 6.1 結論57 6.1.1 三氯矽甲烷在不同相對溼度下逸散及燃燒時之排放特徵57 6.1.2 三氯矽甲烷在不同相對溼度下逸散及燃燒時之排放係數及排放率57 6. 1. 3 三氯矽甲烷在不同相對溼度條件下逸散及燃燒時,其鹽酸氣膠對勞 工呼吸道不同區域之暴露情形58 6.2 建議58 第7章 參考文獻59

    American Society for Testing and Materials (ASTM). 2006. D5116-97 Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions from Indoor Materials/Products.
    Benner CL, Eatough DJ, Eatough NL, Bhardwaja P. 1991.Comparison of annular denuder system and filter pack collection of HNO3(g), HNO2(g) and particulate-phase nitrate, nitrite and sulfate in the south-west desert. Atmos. Environ. 25A: 1537-1545.
    Centre Européen des Silicones. 2003. Safe Handling of Chlorosilanes.
    Coggon D, Pannett B, Wield G. 1996. Upper Aerodigestive Cancer in Battery Manufacturers and Steel Workers Exposed to Mineral Acid Mists. Occup. Environ. Med. 53: 445-449.
    Dow Corning. 1999. Responsible Care Report.
    Dockery DW, Pope CA III, Xu X. 1993. An Association between Air Pollution and Mortality in Six U.S. Cities. N. Engl J Med. 329:1753-1759.
    Dockery DW, Cunningham J, Damokosh AI, Neas LM, Spengler JD, Koutrakis P, Ware JH, Raizenne M, Speizer FE. 1996. Health Effects of Acid Aerosols on North American Children: Respiratory Symptoms. Environmental Health Perspectives 104(5): 500-505.
    El-Sadik YM, Osman AH, El-Gazzar RM. 1972. Exposure to sulfuric acid in manufacture of storage batteries. J Occup Med. 14: 224-226.
    EPA completes chemical safety audit at PCR Inc. in Gainesville, February, 1995.
    Gamble J, Jones W, Hancock J, Meckstroth RL. 1984. Epidemiological-environmental study of lead acid battery workers. III. Chronic effects of sulfuric acid on the respiratory system and teeth. Environ Res. 35: 30-52.
    Gamble J, Jones W, Hancock J. 1984. Epidemiological-environmental study of lead acid battery workers. II. Acute effects of sulfuric acid on the respiratory system. Environ Res. 35: 11-29.
    Hänel G. 1976. The properties of atmospheric aerosol particlea as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Advaces in Geophysics. 19: 73-188.
    Higgins JT. 1998. Manual on Chlorosilane Emergency Repsonse Guidelines. ASTM MNL 33.
    Ito K, Thurston GD, Hayes C, Lippmann M. 1993. Associations of London, England, Daily Mortality with Particulate Matter, Sulfur Dioxide, and Acidic aerosol Pollution. Arch Environ Health 48(4): 213-220.
    Illinois Legislative Investigation Commission. 1975.Chemical Leak at the Bulk Terminals Tank Farm. A Report to the Illinois General Assembly, by the Illinois Legislative Investigation Commission.
    International Agency for Research on Cancer (IARC). 1992.Strong acid mists and some other industrial exposures. "IARC monographs on the evaluation of carcinogenic risks to humans" vol. 54. Lyon.
    Jones W, Gamble J. 1984. Epidemiological-environmental study of lead acid battery workers. I. Environmental study of five acid battery plants. Environ Res. 35: 11-29.
    Jones W, and Gamble J. 1984. Epidemiological-Environmental Study of Lead Acid Battery Workers. Environ. Res. 35: 11-29.
    Koenig JQ, Covert DS, Smith MS, Van Bell G, and Pierson WE. 1988. The effects of inhaled nitric acid on pulmonary function in adolescent asthmatics. Amer. Rev. Respir. Dis. 137-169.
    Koutrakis P, Wolfson JM, Stator JL, Brauer M and Spengler JD. 1988. Evaluation of an Annular Denuder/Filter Pack System to Collect Acidic Aerosols and Gases. Environm. Sci. & Technology. 22(12): 1463-8.
    Koutrakis P, Sloutas C, Ferguson ST, and Wolfson JM. 1993. Development and Evaluation of a Glass Honeycomb Denuder/Filter Pack System to Collect Atmospheric Gases and Particles. Environm. Sci. & Technology. 27(12): 2497-501.
    Lee HS, Wadden RA, and Scheff PA. 1993. Measurement and evaluation of acid air pollutants in Chicago using an annular denuder system. Atmos. Environ. 27A: 543-553.
    Mores TF. 1984. Fundamental Studies of Laser Interaction in Materials Preparation: New Aspects of Chemical Vapor Deposition, Trichlorosilane, Literature Survey and Combustion Experiments. DTIC.
    Malcom D, Paul E. 1961. Erosion of the teeth due to sulfuric acid in the battery industry. Br J Ind Me.18: 63-69.
    Matsumoto M, and Okita T. 1998. Long term measurements of atmospheric gaseous and aerosol species using an annular denuder system in Nara,Japan. Atmos. Environ. 32: 1419-1425.
    McMurry PH, Zhang XQ. 1989. Size distribution of ambient organic and elemental carbon. Aerosol Sci. Technol. 10: 430-437.
    NTSB. 1991. Derailment of CSX Transportation Inc Freight Train and Hazardous Materials Release Near Freeland, Michigan on July 22, 1989. NTSB Report RAR-9 1/04.
    Nelson GO, Priante SJ, Strong M, Anderson D. 2000. Fallon-Carine J. Permeation of Substituted Silanes and Siloxanes Through Selected Gloves and Protective Clothing. Am. Ind. Hyg. Assoc. 61 (5): 709 -714.
    Praxair, Inc. 2006. Trichlorosilane Materials Safety Data Sheet, December.
    Raizenne M, Neas LM, Damokosh AI. 1996. Health Effects of Acid Aerosols on North American Children: Pulmonary Function. Environ Health Perspect. 104(5): 506-514.
    Spengler JD, Brauer M, and Koutrakis P. 1990. Acid Air and Health. Environ. Sci. Technol 24(7): 946-956.
    Suh HH, Spengler JD, and Koutrakis P. 1992. Personal Exposures to Acid Aerosols and Ammonia. Environ. Sci. Technol 26: 2507-2517.
    Spengler JD, Keeler GJ, Koutrakis P, Ryan PB, Raizenne M, Franklin CA. 1989. Exposure to Acidic Aerosols. Environ Health Perspect. 79:43-51.
    Speizer FE. 1989. Studies of acid aerosols in six cities and in. a new multicity investigation: design issues. Environ. Health Perspect. 79: 61-67.
    Tsai CJ, Huang CH, Wang SH, and Shih TS. 2001. Design and Testing of a Personal Porous-Metal Denuder. Aerosol Sci. Technol. 35: 611-616.
    Washington stage department of labor and industries. 1999. Violations alleged in fatal Moses Lake silicon plant explosion, April 14.
    Ware J H, Ferris BG Jr, Dockery D W, Spengler J D, Stram DO. Speizer FE. 1986. Effects of ambient sulfur oxides and suspended particles on respiratory health of preadolescent children. Am. Rev. Respir. Dis. 5: 834-842.
    Williams MK. 1970. Sickness absence and ventilatory capacity of workers exposed to sulphuric acid mist. Br J Ind Med. 27: 61-66.
    牟科俊,唐嘉鴻,陳新友,施惠雅,張榮興,何大成;2009,化學品衍生副產物危害探討,工業安全衛生技術輔導成果發表會
    陳政任,蔡朋枝,李家偉;2008,三氯矽甲烷之緊急應變作業程序與實場測試計畫,南部科學工業園區管理局

    下載圖示 校內:2013-08-26公開
    校外:2013-08-26公開
    QR CODE