簡易檢索 / 詳目顯示

研究生: 胡佳瑩
Hu, Chia-Ying
論文名稱: 貝殼式摻雜無接面電晶體之模型與模擬
Modeling and Simulation of Shell Doping Profile Junctionless Transistor
指導教授: 高國興
Kao, Kuo-Hsing
共同指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 41
中文關鍵詞: 環繞式閘極無接面電晶體奈米線貝殼式摻雜異質接面
外文關鍵詞: gate-all-around, shell doping profile (SDP), junctionless transistor (JLT), nanowire (NW), heterojunction, quantum well
相關次數: 點閱:154下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技技術快速的發展,人們對於電子產品的要求變得趨向於便利性、低功率消耗以及高操作速度。而在傳統金氧半場效電晶體 (MOSFET) 微小化的過程中會遇到很多元件的特性與製程上難題。為了解決或避免眾多困難點如短通道效應,因此一些新穎的元件陸續的被提出。簡而言之,傳統的平面閘極正被替換為環繞式閘極(gate-all-around),以改善短通道效應,低截止狀態和高導通狀態電流驅動的晶體體,並擁有更快的開關操作。低漏電流、降低次臨界擺幅和最小化的隨機摻雜波動使得多閘極電晶體成為未來CMOS的重要技術。
    在本篇論文中,我們將介紹並討論如何改善環繞式閘極奈米線無接面電晶體(nanowire junctionless transistor),並且我們利用兩種方式來增加導通電流和減少漏電流。第一個方法是在全Si FET上使用貝殼式摻雜 (shell doping profile),而另一個方法是使用Si/SiGe SDP FET,在摻雜的部分也就是殼區域中改用不同的材料,利用異質結構(heterojunction) 形成量子井 (quantum well)。本研究通過使用Sentaurus TCAD軟體的模擬結果來實現兩種不同的SDP JLFET,並發現它是未來有發展性的元件,因為它具有兩個主要共同優點:(1)摻雜接近閘極(gate)能擁有較低的漏電流(Ioff)和更好的閘極控制;以及在殼區域中形成量子井能夠將大多數載子限制住,也會有更好的靜電控制能力。(2)與傳統的JLFET和MOSFET相比,SDP JLFET表現出較低的漏電流,以及當奈米線直徑變化時,能擁有差不多的導通電流(Ion),也就是具有較小的電特性變化。因此,本篇論文所提出的SDP JLFET是極有淺力成為下一個世代的新式元件。

    Following technological technique develop rapidly, the requirement of electrical production tend to convenient, low power consumption, high speed velocity. There will cause many difficult problems of manufacture process and device characteristic when scale down traditional MOSFET. In order to avoid nonideal phenomenon, some novel devices are presented continually. In short, conventional planar-gate is being replaced with gate-around-gate to realize transistors with better short channel effects, low off-state and high on-state current drive which allows faster switching operation. Low drain voltage, reduced swing in threshold voltage and minimized random dopant fluctuations made multi-gate transistors suitable candidate for future CMOS technologies.
    In this thesis, we will discuss how to improve gate-all-around nanowire junctionless transistor and we utilize two ways to increase ON-current and decrease OFF-current. The one is using shell doping profile on a Full-Si FET and another one is to using quantum well by heterostructure on a Si/SiGe SDP FET. SDP nanawire JLT is a promising device in the future due to it possesses two main advantages: (1) the dopant proximity to the gate guarantees a lower OFF-current and a better gate control, and a quantum well in the shell region for the majority carriers leads to a better electrostatic control by confining the carriers. (2) Compared with the traditional JLFETs and MOSFETs, SDP-JLFETs exhibit lower OFF-current by decades and less electrical characteristics variation resulting from the diameter variation as their ON-currents saturate at a similar level.
    Our device can be supported by simulated results using technology computer-aided design (TCAD) simulation. According to the results of the research, the novel SDP JLFET shows superior potential for the future device.

    摘要 i Abstract ii Acknowledgement iii CONTENT iv Table Captions vi Figure Captions vii Chapter 1 Introduction and Motivation 1 1.1 Transistor Scaling 1 1.2 From Single Gate to Multigate 2 1.3 Operation Principle of transistors 3 1.4 Motivation 5 1.5 Organization of the Thesis 5 Chapter 2 Simulation Methodology 7 2.1 Introduction to Synopsys Sentaurus TCAD 7 2.2 Physical Model 8 2.2.1 Fermi Statistics 8 2.2.2 Mobility Models 8 2.2.3 Band-to-Band Tunneling 8 2.2.4 Shockley-Read-Hall and Trap-Assisted Tunneling 9 2.2.5 BandgapNarrowing Models 10 2.2.6 Physics Section in SentaurusDevice 11 2.3 Solve Equations 11 Chapter 3 Shell Doping Profile Junctionless FET 13 3.1 Introduction to Shell Doping Profile 13 3.2 Fabrication Process 13 3.3 Device Structure and Simulation Settings 16 3.4 Result Analysis and Discussion 17 3.4.1 Impacts of Shell Doping Profiles on JLFET 17 3.4.2 Different Doping concentration in SDP JLFET 20 3.4.3 JLFETs Versus MOSFETs 22 3.5 Summary 24 Chapter 4 Improving SDP Transistors by Quantum Well Optimization 25 4.1 Introduction to Quantum Well 25 4.1.1 Fermi Level Continuity 25 4.2 Device Structure and Simulation Settings 26 4.3 Result Analysis and Discussion 28 4.3.1 Impact of the Electron Affinity χe 28 4.3.2 Impact of the Bandgap Eg 29 4.3.3 Impact of the Dielectric Constant ɛs 31 4.3.4 Impact of the Mobility µ 32 4.4 Si/SiGe Core-Shell SDP QWFETs 33 4.5 Summary 35 Chapter 5 Conclusion and Future Direction 36 5.1 Conclusion 36 5.2 Future Direction 37 References 38

    References in Chapter 1
    [1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, 1965.
    [2] J.-P. Colinge. “FinFETs and Other Multi-Gate Transistors”
    [3] F. Assaderaghi et al., “High-field transport of inversion-layer electrons and holes including velocity overshoot” IEEE Trans. on Electron Devices, Vol. 44, Issue 4, pp. 664-671 (1997).
    [4] K. Mistry et al., “A 45 nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning and 100% Pb-free packaging” International Electron Devices Meeting (IEDM), Technical Digest (2007).
    14
    [5] I. Ferain et al., “Multigate transistors as the future of classical metaloxide- semiconductor field-effect transistors” Nature 479, pp. 310-316 (2012).
    [6] X. Huang et al., “Sub 50-nm FinFET: PMOS” International Electron Devices Meeting (IEDM), Technical Digest (1999).
    [7] B. S. Doyle et al., “High performance fully-depleted tri-gate CMOS transistors” IEEE Electron Device Letters, Vol. 24, Issue 4, pp. 263-265 (2003).
    [8] C. Auth, “22-nm fully-depleted tri-gate CMOS transistors” Proc. of Custom Integrated Circuits Conference (CICC), pp. 1-6 (2012).
    [9] J.-T. Park, et al., “Pi-Gate SOI MOSFET” IEEE Electron Device Letters, Vol. 22, Issue 8, pp. 405-406 (2001).
    [10] J. Frei et al.,“Body effect in tri- and pi-gate SOI MOSFETs” IEEE Electron Device Letters, Vol. 25, Issue 12, pp. 813-815 (2004).
    [11] F.-L. Yang et al., “25 nm CMOS Omega FETs” International Electron Devices Meeting (IEDM), Technical Digest (2002).
    [12] N. Singh et al., “Ultra-Narrow Silicon Nanowire Gate-All-Around CMOS Devices: Impact of Diameter, Channel-Orientation and Low Temperature on Device Performance” International Electron Devices Meeting (IEDM), Technical Digest (2006).
    [13] J.-P. Colinge et al., “Silicon-on-insulator gate-all-around device’” International Electron Devices Meeting (IEDM), Technical Digest (1990).
    [14] K. Okano et al., “Process integration technology and device characteristics of CMOS FinFET on bulk silicon substrate with sub-10 nm fin width and 20 nm gate length” International Electron Devices Meeting (IEDM), Technical Digest (2005).
    [15] Adrian M. Ionescu, “nanowire transistors made easy” Nature Namotechnology (2010)
    [16] J. P. Colinge et al., “Nanowire transistors without junctions” Nature Nanotechnology, 5, pp. 225-229 (2010).
    [17] C. W. Lee et al., “Junctionless multigate field effect transistor” Applied Physics Letters, Vol. 94, Issue 5, 053511 (2009).
    [18] J. P. Colinge et al., “Junctionless Nanowire Transistor (JNT): Properties and design guidelines” Solid-State Electronics, Vol. 65-66, pp. 33-37 (2011).
    References in Chapter 2
    [1] https://www.synopsys.com
    [2] Sentaurus Device, Synopsys, Inc., Mountain View, CA, 2012.
    [3] S. C. Jain et al., Solid-State Electron., 34, 453, 1991.
    [4] J. M. Lopez-Gonzalez et al., IEEE Trans. on Electron Devices, 44, 1046, 1997.
    [5] J. Poortmans et al., Solid-State Electron., 36, 1763, 1993.
    [6] R.C. Aguilera et al., Appl. Phys. Lett., 102, 152106, 2013.
    References in Chapter 3
    [1] H.-B. Chen et al., VLSI Tech. Dig., 2013, pp. T232–T233.
    [2] J.-P. Colinge et al., Nature Nanotechnol., vol. 5, no. 3, pp. 225–229, 2010.
    [3] B. Sorée et al., J. Comput. Electron., vol. 7, no. 3, pp. 380–383, 2008.
    [4] M. Ichii et al., “Computational study of effects of surface roughness and impurity scattering in Si double-gate junctionless transistors,” IEEE Trans. Electron Devices, vol. 62, no. 4, pp. 1255–1261, Apr. 2015.
    [5] K. J. Kuhn, “Reducing variation in advanced logic technologies: Approaches to process and design for manufacturability of nanoscale CMOS,” in IEDM Tech. Dig., Dec. 2007, pp. 471–474.
    [6] A. Asenov et al., “Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs,” IEEE Trans. Electron Devices, vol. 50, no. 9, pp. 1837–1852, Sep. 2003.
    [7] A. M. Ionescu, “Electronic devices: Nanowire transistors made easy,” Nature Nanotechnol., vol. 5, no. 3, pp. 178–179, 2010.
    [8] F. Jazaeri et al., “Modeling and design space of junctionless symmetric DG MOSFETs with long channel,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2120–2127, Jul. 2013.
    [9] J. C. Ho et al., “Controlled nanoscale doping of semiconductors via molecular monolayers,” Nature Materials., vol. 7, pp. 62–67, Jan. 2008.
    [10] K.-W. Ang et al., “300 mm FinFET results utilizing conformal, damage free, ultra shallow junctions (Xj∼5 nm) formed with molecular monolayer doping technique,” in IEDM Tech. Dig., Dec. 2011, pp. 35.5.1–35.5.4.
    [11] J. C. Ho, R. Yerushalmi et al., “Wafer-Scale, Sub-5 nm Junction Formation by Monolayer Doping and Conventional Spike Annealing”, Nano Lett., vol. 9, No. 2, 725-730, 2009.
    [12] Y.-J. Lee et al., “Low-Temperature Microwave Annealing Processes for Future IC Fabrication—A Review,” IEEE Trans. Electron Devices, vol. 61, no. 3, p. 651-665, Mar. 2014.
    [13] S. Stathopoulous et al., “ CO2 Laser Annealing for USJ Formation in Silicon: Comparison of Simulation and Experiment,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 696-701, Mar. 2014.
    [14] Y.-J. Lee et al., “A Novel Junctionless FinFET Structure with Sub-5nm Shell Doping Profile by Molecular Monolayer Doping and Microwave Annealing,” IEDM Tech. Dig., Dec. 2014, pp. 32.7.1-32.7.4.
    [15] Y.-J. Lee et al., “High Performance Poly Si Junctionless Transistors with Sub-5nm Conformally Doped Layers by Molecular Monolayer Doping and Microwave Incorporating CO2 Laser Annealing for 3D Stacked ICs Applications,” IEDM Tech. Dig., 2015, pp. 6.2.1-3.2.4.
    [16] S. Stathopoulos et al., IEEE T-ED. p.696, 2014.
    [17] Sentaurus Device, Synopsys, Inc., Mountain View, CA, USA, 2012.
    [18] S. Gundapaneni et al., “Effect of band-to-band tunneling on junctionless transistors,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 1023–1029, Apr. 2012.
    [19] F. Jazaeri et al., “Modeling and design space of junctionless symmetric DG MOSFETs with long channel,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2120–2127, Jul. 2013.
    [20] L. Barbut et al., “Transient off-current in junctionless FETs,” IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 2080–2083, Jun. 2013.
    [21] F. Jazaeri et al., “Analytical model for ultrathin body junctionless symmetric double gate MOSFETs in subthreshold regime,” Solid-State Electron., vol. 82, pp. 103–110, Apr. 2013.
    [22] P. Razavi et al., “Influence of channel material properties on performance of nanowire transistors,” J. Appl, Phys., vol. 111, no. 12, p. 124509, 2012.
    [23] C.-W. Lee et al., “Performance estimation of junctionless multigate transistors,” Solid-State Electron., vol. 54, no. 2, pp. 97–103, 2010.
    [22] S. C. Jain et al., “A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1−x strained layers,” Solid-State Electron., vol. 34, no. 5, pp. 453–465, 1991.
    References in Chapter 4
    [1] Amato et al., "Band-offset driven efficiency of the doping of SiGe core-shell nanowires," Nano letters, vol. 11, pp. 594-598, 2010.
    [2] Geert Hellings, "High Mobility and Quantum Well Transistors".
    [3] Malkundi Puttaveerappa Vijay Kumar et al., “Impacts of the Shell Doping Profile on the Electrical Characteristics of Junctionless FETs,” IEEE Trans. Electron Devices, vol. 62, no. 11, pp. 3541-3546, Nov. 2015.
    [4] Semiconductors on NSM [Online].
    Available: http://www.ioffe.ru/SVA/NSM/Semicond/index.html
    [5] M. V. Fischetti et al., “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys., vol. 80, no. 4, pp. 2234–2252, Aug. 1996.
    [6] Kuo-Hsing Kao et al., "Compressively strained SiGe band-to-band tunneling model calibration based on pin diodes and prospect of strained SiGe tunneling field-effect transistors," J. Appl. Phys., vol. 116, pp. 214506-1–214506-11, 2014.
    [7] Sentaurus Device, Synopsys, Inc., Mountain View, CA, 2012.
    [8] S. Gundapaneni et al., “Effect of Band-to-Band Tunneling on Junctionless Transistors,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 1023-1029, Apr. 2012.
    [9] A. S. Verhulst et al., "Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization," J. Appl. Phys., vol. 104, no. 6, pp. 064 514-1–064 514-10, Sep. 2008.
    [10] T. Dutta et al.,"Impact of quantum effects on the short channel effects of III–V nMOSFETs in weak and strong inversion regimes," Solid-State-Electron., vol. 88, pp. 43-48, 2013.
    [11] Rieger et al., "Electronic-band parameters in strained Si 1− x Ge x alloys on Si1− yGey substrates," Physical Review B, vol. 48, no.19, p. 14276-14287, Nov. 1993.

    下載圖示 校內:2022-01-16公開
    校外:2022-01-16公開
    QR CODE