簡易檢索 / 詳目顯示

研究生: 史曜瑋
Shih, Yao-Wei
論文名稱: 以熱迴流系統製備奈米級異價摻雜鈦酸鍶粉體及其燒結塊材之研究
The study on nanopowder preparation by reflux system and sintered bulk for heterovalent dopants strontium titanate
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 121
中文關鍵詞: 熱迴流奈米粉體鈦酸鍶異價摻雜
外文關鍵詞: reflux, nano powder, strontium titanate, heterovalent dopant
相關次數: 點閱:116下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來急遽的氣候變遷,危害了生物的生存環境,溫室效應可以說是最主要的元兇。十八世紀工業革命之後,人類文明快速進步,大量開發石油、煤炭等石化燃料,產生大量的溫室氣體,讓大氣中的二氧化碳濃度日益增加,使得各地的年均溫持續攀升,因此各國開始關注能源危機以及全球暖化的問題,開發新能源來解決這項危機是當務之急。目前科學家積極發展再生能源,例如:生質能、風能、地熱、水力等無汙染的能源;或是提高傳統能源的轉換效率,例如:汽電共生、燃料電池、太陽能電池以及熱電材料等。鈦酸鍶可以應用於太陽能電池的電極以及n型的熱電材料,並且無毒性、環境友善性佳以及良好的熱穩定性,因此是具前瞻性的能源材料之一。
    目前大部分的鈦酸鍶是以高溫固相反應法製備而得,但是固相法需要高溫(> 1300 ℃)煆燒反應,不易合成單一相且難以製備小粒徑粉體之缺點,其常壓燒結溫度高達1400至1800 ℃,而水熱法以及溶液凝膠法具有反應溫度低、時間短,並且可以合成奈米晶粒的優點,大幅降低生產成本,達到節能的需求。
    本研究旨在以熱迴流系統製備未摻雜以及摻雜鑭、釹的奈米級鈦酸鍶粉體,依據實驗製程中兩種不同極性(異丙醇以及乙二醇)的溶劑,探討合成粉體之結晶相鑑定、微觀結構、表面結構、熱重損失以及燒結塊材的密度。研究結果顯示以異丙醇為反應溶劑製備之鈦酸鍶粉體,於75 ℃加熱30分鐘即可合成未摻雜以及摻雜鑭、釹之鈦酸鍶粉體,由Scherrer equation計算可得粉體粒徑大小為35.0 nm;以乙二醇為反應溶劑製備之鈦酸鍶粉體,於75 ℃加熱90分鐘可以合成未摻雜以及摻雜鑭、釹之鈦酸鍶粉體,由Scherrer equation計算可得粉體粒徑大小為26.1 nm。
    從FT-IR結果發現,合成粉體的表面帶有水分子、硝酸根離子以及碳酸根離子。粉體經600 ℃熱處理1 ~ 5小時後,未摻雜以及摻雜鑭、釹的奈米級鈦酸鍶粉體之重量損失皆無明顯的差異,因此以1小時做為熱處理之持溫時間。製程A以異丙醇為反應溶劑製備之粉體粒徑大小為44.0 nm;製程B以乙二醇為反應溶劑製備之粉體顆粒大小為37.1 nm,並且沒有初期燒結的現象。
    製程A之未摻雜鈦酸鍶粉體以及摻雜鑭、釹鈦酸鍶粉體經600 ℃熱處理1小時後,於98 MPa的壓力冷壓成型,並且以1400 ℃、5% H2-95% Ar的還原氣氛下燒結1小時所得燒結塊材,其相對密度皆高於80 %,晶粒大小為1 ~ 5 μm;製程B之未摻雜鈦酸鍶粉體以及摻雜鑭、釹鈦酸鍶粉體經冷壓成型後,以相同條件進行燒結,其相對密度皆高於85 %,晶粒大小為1 ~ 5 μm。

    In order to get nano-sized strontium titanate powder, La and Nd-doped nano-sized strontium titanate powders were synthesized by reflux system. Using 2-propanol and ethylene glycol as solvents. Non-doped, La and Nd-doped strontium titanate powder were heated at 600 ˚C for 1 h. The heat treated powders were under cold isostatically pressed at 98 MPa, and sintered at 1400 ˚C under highly reducing conditions (5% H2-95% Ar) for 1 h. Characteristics of SrTiO3, Sr0.9La0.1TiO3, and Sr0.9La0.1TiO3 synthesized powders were analysized by XRD, SEM, FT-IR, and TGA.
    The SrTiO3 powder could be synthesized by 2-propanol at 75 ˚C for 30 min, and by ethylene glycol at 75 ˚C for 90 min as well. The particle size of synthesized SrTiO3 powder was about 100 nm.
    In order to eliminate impurities, such like nitrate ions etc. adsorbed on the surface of particles, the powders were heated at 600 ˚C in air for 1 h. The relationship between weight loss percentage and heat treatment temperature was obtained. Furthermore, heat treated powders also showed perovskite-SrTiO3 phase without second phase. Non-doped, La and Nd-doped strontium titanate bulk prepared by 2-propanol showed the relative density were over 80 %, and the others prepared by ethylene glycol showed the relative density were over 85 %. The grain sizes of three samples prepared by process A and B were 1-2 μm, 1-2 μm, and 1-5 μm, respectively.

    中文摘要 I Abstract III 致謝 XI 目錄 XIII 圖目錄 XV 表目錄 XX 第一章 緒論 1 1-1 前言 1 1-2 研究動機目的與對策 6 第二章 相關文獻回顧及整理 8 2-1 基本熱電效應 8 2-2 熱電效應的發展 10 2-3 熱電效應的應用 11 2-3-1 熱電元件的研發 11 2-3-2 熱電元件與能源轉換效率 13 2-4 熱電材料的種類 15 2-5 提升熱電性質之方法 17 2-6 鈦酸鍶相關背景及研究動態 20 2-6-1 鈦酸鍶材料的製備方法 21 2-6-2 鈦酸鍶材料之熱電相關研究 33 第三章 實驗方法與步驟 62 3-1 實驗用藥品及原料 62 3-2 實驗流程 63 3-3 材料性質之分析 67 3-3-1 熱差/熱重分析(DTA/TGA) 67 3-3-2 結晶相鑑定(XRD) 67 3-3-3 紅外線光譜分析 68 3-3-4 燒結體密度之量測 68 3-3-5 微結構之分析 69 第四章 結果與討論 72 4-1奈米級鈦酸鍶粉體之合成機制 72 4-2鈦酸鍶粉體之特質 75 4-2-1 粉體之結晶相鑑定 75 4-2-2 粉體之微觀結構 75 4-2-3 粉體之表面結構 77 4-2-4 粉體之熱重分析 78 4-3熱處理粉體之分析 90 4-3-1 熱處理粉體之結晶相鑑定 90 4-3-2 熱處理粉體之微觀結構 90 4-3-4 熱處理粉體之表面結構 91 4-3-4 熱處理粉體之熱重/熱差分析 91 4-4鈦酸鍶塊材之特質 99 4-4-1 塊材之結晶相鑑定 99 4-4-2 塊材之微觀結構分析 99 第五章 結論 109 第六章 未來工作 111 參考文獻 112

    [1] G. D. Mahan, E. Henry and S. Frans, "Good Thermoelectrics," Solid State Physics, vol. 51, pp. 81-157, 1998.
    [2] S. K. H. Ohta, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, "Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3," Nature Material, vol. 6, pp. 129-135, 2007.
    [3] P. J. Taylor, T. C. Harman, M. P. Walsh, and B. E. LaForge, "Quantum Dot Superlattice Thermoelectric Materials and Devices," Science, vol. 297, pp. 2220-2224, 2002.
    [4] C. H. Kuo, H. S. Chien, C. S. Hwang, Y. W. Chou, M. S. Jeng and M. Yoshimura, "Thermoelectric Properties of Fine-Grained PbTe Bulk Materials Fabricated by Cryomilling and Spark Plasma Sintering," Journal of Electronic Materials, vol. 52, pp. 795-801, 2011.
    [5] G. R. Moos and K. H. Hrdtl, "Thermoelectric properties of non-doped and Y-doped SrTiO3 polycrystals synthesized by polymerized complex process and hot pressing," Journal of Applied Physics, vol. 78, pp. 5042-5046, 1995.
    [6] S. Hashimoto, F. W. Poulsen, and M. Mogensen, "Conductivity of SrTiO3 based oxides in the reducing atmosphere at high temperature," Journal of Alloys and Compounds, vol. 439, pp. 232-236, 2007.
    [7] Y. H. Obara, C. H. Lee, K. Kobayashi, A. Matsumoto, and R. Funahashi, "Thermoelectric Properties of Y-Doped Polycrystalline SrTiO3," Japanese Journal of Applied Physics, vol. 43, pp. 540-542, 2004.
    [8] P. K. Gallagher, F. Schrey, and F. V. Dimarcello, "Preparation of semiconducting titanates by chemical methods," Journal of the American Ceramic Society, vol. 46, pp. 359-365, 1963.
    [9] J. D. Chen and M. Zhang, "Hydrothermal synthesis of strontium titanate powders with nanometer size derived from different precursors," Journal of the European Ceramic Society, vol. 20, pp. 1261-1265, 2000.
    [10] N. Okinaka, A. Kikuchi, and T. Akiyama, "A large thermoelectric figure of merit of La-doped SrTiO3 prepared by combustion synthesis with post-spark plasma sintering," Scripta materials, vol. 63, pp. 407-410, 2010.
    [11] http://wenku.baidu.com/view/b031dd785f0e7cd18425368a.html
    [12] M. Yoshimura, M. Kakihana, H. Mazaki, H. Yasuoka, and L. Borjesson, "Polymerized complex synthesis and intergranular coupling of Bi‐Pb‐Sr‐Ca‐Cu‐O superconductors characterized by complex magnetic susceptibility," Journal of Applied Physics, vol. 71, pp. 3904-3910, 1992.
    [13] F. Capel, P. Duran, J. Tartaj, and C. Moure, "Low-temperature fully dense and electrical properties of doped-ZnO varistors by a polymerized complex method," Journal of the European Ceramic Society, vol. 22, pp. 67-77, 2002.
    [14] T. Nagira, M. Ito, D. Furumoto, S. Katsuyama, and H. Nagai, "Synthesis of NaxCo2O4 thermoelectric oxides by the polymerized complex method," Scripta Materials, vol. 48, pp. 403-408, 2003.
    [15] S. Banerjee, Y. Mao and S. S. Wong, "Hydrothermal synthesis of perovskite nanotubes," Chemical Communications, vol. 9, pp. 408-409, 2003.
    [16] K. M. Hung and W. D. Yang, "Optimization of the experimental conditions for the preparation of a thin strontium titanate film by hydrothermal process," Journal of Materials Science, vol. 37, pp. 1337-1342, 2002.
    [17] J. Liu, S. Zhang, Y. Han, B. Chen, and X. Li, "Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions," Materials Science and Engineering: B, vol. 110, pp. 11-17, 2004.
    [18] T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, "Large thermoelectric response of metallic perovskites:Sr1−xLaxTiO3 (0<x<0.1)," Physical Review B, vol. 63, pp. 1131041-1131044, 2001.
    [19] A. V. Kovalevsky, S. Populoh, S. G. Patrício, P. Thiel, M. C. Ferro, and D. P. Fagg, "Design of SrTiO3-based thermoelectrics by tungsten substitution," Journal of Physical Chemistry C, vol. 119, pp. 4466-4478, 2015.
    [20] K. N. T. Okuda, S. Miyasaka, and Y. Tokura, "Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3," Physical Review B, vol. 63, pp. 1-4, 2001.
    [21] T. Nomura, S. Ohta, H. Ohta, M. Hirano, H. Hosono, and K. Koumoto, "High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals," Journal of Applied Physics, vol. 97, pp. 034-037, 2005.
    [22] P. P. Shang, Y. Liu, J. F. Li, and H. M. Zhu, "Preparation and Thermoelectric Properties of La-Doped SrTiO3 Ceramics," Journal of Electronic Materials, vol. 40, pp. 926-931, 2011.
    [23] K. Kurosaki, H. Muta, and S. Yamanaka, "Thermoelectric properties of rare earth doped SrTiO3," Journal of Alloys and Compounds, vol. 350, pp. 292-295, 2003.
    [24] J. Liu, C. L. Wang, W. B. Su, H. C. Wang, J. C. Li, and J. L. Zhang, "Thermoelectric properties of Sr1−xNdxTiO3 ceramics," Journal of Alloys and Compounds, vol. 492, pp. 54-56, 2010.
    [25] K. Kurosaki, H. Muta, and S. Yamanaka, "Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3," Journal of Alloys and Compounds, vol. 392, pp. 306-309, 2003.
    [26] K. Kurosaki, H. Muta, and S. Yamanaka, "Structure, magnetic and electrical properties of La0.6Sr0.4−xKxMnO3 perovskites," Journal of Alloys and Compounds, vol. 412, pp. 55-61, 2005.
    [27] M. Nygren, "SPS Processing of Nano-Structured Ceramics," Journal of Iron and Steel Research International, vol. 14, pp. 99-103, 2007.
    [28] D. M. Rowe, CRC Handbook of Thermoelectrics, CRC Press, 1995.
    [29] X. Ma and S. B. Riffat, "Thermo-electrics: A review of present and potential applications Applied Thermal Engineering," Applied Thermal Engineering, vol. 23, pp. 913-917, 2003.
    [30] F. Stabler, "Automotive applications for high efficiency thermoelectrics in Proceedings of DARPA/DOE High Efficient Thermoelectric Workshop," San Diego, 2002.
    [31] R. G. Miller, "Production of general purpose heat source (GPHS) using advanced manufacturing methods," AIP Conference, 1996.
    [32] R. Richman, "Prospects for efficient thermoelectric materials in the near term," DARPA/DOE High Efficient Thermoelectric Workshop," San Diego, 2002.
    [33] http://www.tetech.com/techinfo/#faqs
    [34] S. Ballikaya and C. Uher, "Enhanced thermoelectric performance of optimized Ba, Yb filled and Fe substituted skutterudite compounds," Journal of Alloys and Compounds, vol. 585, pp. 168-172, 2014.
    [35] P. Rogl, "Formation of clathrates," 2005 International Conference on Thermoelectrics, pp. 443-448, 2005.
    [36] M. Ohtaki, "Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source," Journal of Ceramic Society of Japan, vol. 119, pp. 770-775, 2011.
    [37] D. M. Rowe, "Thermoelectrics Handbook: Micro to Nano," CRC Press, 2005.
    [38] K. Kishimoto, M. Tsukamoto, and T. Koyanagi, "Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering," Journal of Applied Physics, vol. 92, pp. 5331-5339, 2002.
    [39] K. Kishimoto and T. Koyanagi, "Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties," Journal of Applied Physics, vol. 92, pp. 2544-2549, 2002.
    [40] C. W. Nan and R. Birringer, "Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model," Physical Review B - Condensed Matter and Materials Physics, vol. 57, pp. 8264-8268, 1998.
    [41] C. B. Murray, C. R. Kagan, and M. G. Bawendi, "Self-organization of CdSe nanocrystallites into 3-dimentional quantum-dot superlattices," Science, vol. 270, pp. 1335-1338, 1995.
    [42] C. B. Murray, D. J. Norris, and M. G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites," Journal of the American Chemical Society, vol. 115, pp. 8706-8715, 1993.
    [43] X. G. Peng, "Shape control of CdSe nanocrystals," Nature, vol. 404, pp. 59-61, 2000.
    [44] S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, "Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices," Science, vol. 287, pp. 1989-1992, 2000.
    [45] Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science, vol. 298, pp. 2176-2179, 2002.
    [46] 施靜宜, "Size dependent optical properties of InAs/GaAs quantum dots," Master, Chemistry, National Chiao Tung University, 2010.
    [47] P. J. Taylor, T. C. Harman, M. P. Walsh and B. E. LaForge, "Quantum dot superlattice thermoelectric materials and devices," Science, vol. 297, pp. 2229-2232, 2002.
    [48] H. Wang, W. D. Porter, H. Böttner, J. König, L. Chen, S. Bai, T. M. Tritt, and Alex Mayolet, "Transport Properties of Bulk Thermoelectrics: An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat, and Thermal Conductivity, " Nature, vol. 413, pp. 1073-1084, 2013.
    [49] M. S. Desselhaus, "Thermoelectric properties of superlattice nanowires," Physical Review B, vol. 68, pp. 7-15, 2003.
    [50] Z. Li, W. Wu, F. Liu, Y. Li, P. Sia, and H. Ge, "Microwave dielectric properties of La4Ti3O12 ceramics," European Journal of Inorganic Chemistry, vol. 118, pp. 24-26, 2014.
    [51] C. Wagner, "The mechanism of the movement of ions and electrons in solids and the interpretation of reactions between solids," Transactions of the Faraday Society, vol. 34, pp. 851-859, 1938.
    [52] H. E. Zorel Jr, L. S. Guinesi, C. A. Ribeiro, and M. S. Crespi, "SrTiO3 preparation through coprecipitation methods," Materials Letters, vol. 42, pp. 16-20, 2000.
    [53] 林宏章, "燃燒合成法製備TiO2應用於敏化太陽能電池之研製,"碩士, 機械工程學研究所, 國立臺灣大學,台北市, 2008.
    [54] 郭慶杰、張建社、劉永卓, "化學鍵燃燒載氧體顆粒製備技術研究, "海峽兩岸氣候變遷與能源永續發展論壇, 2011.
    [55] N. Okinaka, L. Zhang, and T. Akiyama, "Thermoelectric properties of rare earth-doped SrTiO3 using combination of combustion synthesis (CS) and spark plasma sintering (SPS)," ISIJ International, vol. 50, pp. 1300-1304, 2010.
    [56] S. Somiya, "Hydrothermal Reactions for Materials Science and Engineering: An Overview of Research in Japan, " Springer Nethelands, 1989.
    [57] J. B. Hannay, "On the Artificial Formation of the Diamond," Proceedings Royal Society of London, vol. 30, pp. 450-461, 1880.
    [58] M. Yoshimura and K. Byrappa, Handbook of Hydrothermal Technology, Materials science & process technology, 2001.
    [59] J. O. Eckert Jr., C. C. Houston, B. L. Gersten, M. M. Lencka, and R. E. Riman, "Kinetics and Mechanism of Hydrothermal Synethesis of Barium Titanate," Journal of the American Ceramic Society, vol. 79, pp. 2929-2934, 1996.
    [60] W. Z. Wang, C. C. Akbar, and R. Asiale, "Fast-sintering of Hydrothermally Synthesized BaTiO3 Powders and their Dielectric Properties," Journal of Materials Science, vol. 32, pp. 4303-4307, 1997.
    [61] D. Chen, X. Jiao, and M. Zhang, "Hydrothermal synthesis of strontium titanate powders with nanometer size derived from different precursors," Journal of the European Ceramic Society, vol. 20, pp. 1261-1265, 2000.
    [62] M. H. Um and H. Kumazawa, "Hydrothermal synthesis of ferroelectric barium and strontium titanate extremely fine particles," Journal of Materials Science, vol. 35, pp. 1295-1300, 2000.
    [63] S. Zhang, Y. Han, B. Chen, and X. Song, "The influence of TiO2 · H2O gel on hydrothermal synthesis of SrTiO3 powders," Materials Letters, vol. 51, pp. 368-370, 2001.
    [64] S. Zhang, J. Liu, Y. Han, B. Chen, and X. Li, "Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions," Materials Science and Engineering: B, vol. 110, pp. 11-17, 2004.
    [65] J. Luo and P. A. Maggard, "Hydrothermal synthesis and photocatalytic activities of SrTiO3-coated Fe2O3 and BiFeO3," Advanced Materials, vol. 18, pp. 514-517, 2006.
    [66] H. Cui, M. Zayat, and D. Levy, "Controlled homogeneity of the precursor gel in the synthesis of SrTiO3 nanoparticles by an epoxide assisted sol–gel route," Journal of Non-Crystalline Solids, vol. 353, pp. 1011-1016, 2007.
    [67] T. Puangpetch, T. Sreethawong, S. Yoshikawa, and S. Chavadej, "Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO3 nanocrystals prepared by sol–gel method with the aid of structure-directing surfactant," Journal of Molecular Catalysis A: Chemical, vol. 287, pp. 70-79, 2008.
    [68] S. Fuentes, R. A. Zarate, E. Chavez, P. Muñoz, D. Díaz-Droguett, and P. Leyton, "Preparation of SrTiO3 nanomaterial by a sol-gel-hydrothermal method," Journal of Materials Science, vol. 45, pp. 1448-1452, 2010.
    [69] R. D. Akita, Q. Yin, S. Sato, and S. Tsugio, "Microwave-Assisted Hydrothermal Synthesis and Photocatalytic Properties of Cr and La-Codoped SrTiO3 Photocatalyst," Key Engineering Materials, vol. 608, pp. 147-152, 2014.
    [70] S. Somiya, "Hydrothermal Reactions for Material Science and Engineering: An Overview of Research in Japan," Springer Nethelands, 1989.
    [71] R. Akita, Q. Dong, S. Yin, and T. Sato, "Microwave-assisted hydrothermal synthesis and photocatalytic properties of Cr and La-codoped SrTiO3 photocatalyst," in Key Engineering Materials, vol. 608, pp. 147-152, 2014.
    [72] T. Klaytae, P. Panthong, Y. Onjun, and S. Thountom, "The Effects of Sintering Temperature on the Physical and Electrical Properties of SrTiO3 Ceramics Prepared Via Sol-Gel Combustion Method," Ferroelectrics, vol. 491, pp. 79-86, 2016.
    [73] T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, "Large thermoelectric response of metallic perovskites:Sr1-xLaxTiO3 (0<x<0.1)," Physical Review B, vol. 63, pp. 114103- 114107, 2001.
    [74] S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, "High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals," Journal of Applied Physics, vol. 97, pp. 1-4, 2005.
    [75] L. Zhang, T. Tosho, N. Okinaka, and T. Akiyama, "Thermoelectric properties of combustion-synthesized Lanthanum-doped strontium titanate," Materials Transactions, vol. 48, pp. 1079-1083, 2007.
    [76] H. Ohta, "Thermoelectrics based on strontium titanate," Materials Today, vol. 10, pp. 44-49, 2007.
    [77] T. Tosho, L. Zhang, N. Okinaka, and T. Akiyama, "Thermoelectric properties of combustion synthesis and spark plasma sintered Sr1-xRxTiO3 (R = Y, La, Sm, Gd, Dy, 0 < x ≤ 1)," Materials Transactions, vol. 95, pp. 2088-2093, 2009.
    [78] J. Liu, C. L. Wang, W. B. Su, H. C. Wang, P. Zheng, and J. C. Li, "Enhancement of thermoelectric efficiency in oxygen-deficient Sr1-x Lax TiO3-δ ceramics," Applied Physics Letters, vol. 95, pp. 2110-2113, 2009.
    [79] A. Kikuchi, L. Zhang, N. Okinaka, T. Tosho, and T. Akiyama, "Effects of Sintering Temperature on Thermoelectric Device of La-Doped Strontium Titanate in the Combination of Combustion Synthesis and Spark Plasma Sintering," Materials Transactions, vol. 50, pp. 2675-2679, 2009.
    [80] H. He, N. Wang, X. Li, L. Han, and C. Zhang, "Enhanced thermoelectric properties of Nb-doped SrTiO3 polycrystalline ceramic by titanate nanotube addition," Journal of Alloys and Compounds, vol. 506, pp. 293-296, 2010.
    [81] X. Wang, A. A. Elling, X. Li, Z. Peng, and X. W. Denga, " Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize," Plant Cell, vol. 21, pp. 1053-1069, 2010.
    [82] P. P. Shang, B. P. Zhang, Y. Liu, J. F. Li, and H. M. Zhu, "Preparation and Thermoelectric Properties of La-Doped SrTiO3 Ceramics," Journal of Electronic Materials, vol. 40, pp. 926-931, 2010.
    [83] H. C. Wang, C. L. Wang, W. B. Su, J. Liu, Y. Sun, and H. Peng, "Doping effect of La and Dy on the thermoelectric properties of SrTiO3," Journal of the American Ceramic Society, vol. 94, pp. 838-842, 2011.
    [84] M. Itoa and N. Hasegawa, "Thermoelectric Properties and Densification Behavior of SrTiO3/TiB2 Composites," Materials Science Forum, vol. 706-709, pp. 1909-1914, 2012.
    [85] Z. H. Yuan, G. H. Zheng, Z. X. Dai, H. Q. Wang, H. B. Li, Y. Q. Ma, and G. Li, "Improvement of the Thermoelectric Properties of (Sr0.9La0.1)3Ti2O7 by Ag Addition," Journal of Low Temperature Physics, vol. 173, pp. 80-87, 2013.
    [86] Y. Wang, C. Wan, X. Zhang, L. Shen, K. Koumoto, and A. Gupta, "Influence of excess SrO on the thermoelectric properties of heavily doped SrTiO3 ceramics," Applied Physics Letters, vol. 102, pp. 905-910, 2013.
    [87] Y. Ishikawa, T. Teranishi, H. Hayashi, A. Kishimoto, M. Katayama, and Y. Inada, "Thermoelectric Efficiency of Reduced SrTiO3 Ceramics Modified with La and Nb," Journal of the American Ceramic Society, vol. 96, pp. 2852–2856, 2013.
    [88] G. H. Zheng, Z. X. Dai, H. B. Li, H. Q. Wang, Y. Q. Li, and X. F. Xu, "Improving the Thermoelectric Properties of Sr0.9La0.1TiO3 by Ag Addition," Journal of Low Temperature Physics, vol. 174, pp. 128-135, 2013.
    [89] D. Srivastava, F. Azough, M. Molinari, S. C. Parker, and R. Freer, "High-Temperature Thermoelectric Properties of (1 − x) SrTiO3 − (x) La1/3NbO3 Ceramic Solid Solution," Journal of Electronic Materials, vol. 44, pp. 1803-1808, 2014.
    [90] K. Park, J. S. Son, S. I. Woo, K. Shin, M. W. Oh, and S. D. Park, "Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticles," Journal of Materials Chemistry A, vol. 2, pp. 4217-4224, 2014.
    [91] A. V. Kovalevsky, A. A. Yaremchenko, S. Populoh, P. Thiel, D. P. Fagg, and A. Weidenkaff, "Towards a high thermoelectric performance in rare-earth substituted SrTiO3: effects provided by strongly-reducing sintering conditions," Physical Chemistry Chemical Physics, vol. 16, pp. 26946-26954, 2014.
    [92] T. E. Loland, J. Sele, M. A. Einarsrud, P. E. Vullum, M. Johnsson, and K. Wiik, "Thermal Conductivity of A-Site Cation-Deficient La-Substituted SrTiO3 Produced by Spark Plasma Sintering," Energy Harvesting and Systems, vol. 2, pp.63-71, 2015.
    [93] Y. Li, W. Wei, L. Yang, M. Su, Y. Sun, and G. Min, "La and Nd co-doped effect on thermoelectric properties of SrTiO3 ceramics," Journal of Science, vol. 43, pp. 306-310, 2016.
    [94] Y. F. Wang, K. H. Lee, H. Ohta, and K. Koumoto, "Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO (SrTiO3)n (n=1, 2) ceramics," Ceramics International, vol. 34, pp. 849-852, 2008.
    [95] J. Okamoto, G. Shimizu, S. Kubo, Y. Yamada, H. Kitagawa, and A. Matsushita, "Thermoelectric properties of B-doped SrTiO3 single crystal," Journal of Physics: Conference Series, vol. 176, pp. 012042-012045, 2009.
    [96] J. Liu, C. L. Wang, Y. Li, W. B. Su, Y. H. Zhu, and J. C. Li, "Influence of rare earth doping on thermoelectric properties of SrTiO3 ceramics," Journal of Applied Physics, vol. 114, pp. 3714-3721, 2013.
    [97] A. M. Dehkordi, S. Bhattacharya, J. He, H. N. Alshareef, and T. M. Tritt, "Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopants," Applied Physics Letters, vol. 104, pp. 3902-3906, 2014.
    [98] S. Bhattacharya, A. Mehdizadeh Dehkordi, S. Tennakoon, R. Adebisi, J. R. Gladden, and T. Darroudi, "Role of phonon scattering by elastic strain field in thermoelectric Sr1−xYxTiO3−δ," Journal of Applied Physics, vol. 115, pp. 3712-3721, 2014.
    [99] A. I. Abutaha, S. R. Kumar, K. Li, A. M. Dehkordi, T. M. Tritt, and H. N. Alshareef, "Enhanced Thermoelectric Figure-of-Merit in Thermally Robust, Nanostructured Superlattices Based on SrTiO3," Chemistry of Materials, vol. 27, pp. 2165-2171, 2015.
    [100] http://zh.wikipedia.org/zhw/%E9%92%9B%E9%85%B8%E9%94%B6
    [101] http://www.chemguide.co.uk/atoms/properties/atradius.html
    [102] 劉君愷, 汽車節能減碳新處方熱電技術化廢氣為電能, 2015.
    [103] M. T. Kishimoto, "Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering," Journal of Crystal Growth, vol. 92, pp. 5331-5339, 2002.
    [104] Y. Liao, Y. Xu, and Y. Chan, "Semiconductor nanocrystals in sol-gel derived matrices," Physical Chemistry Chemical Physics, vol. 15, pp. 13694-13704, 2013.
    [105] H. Xu, S. Wei, H. Wang, M. Zhu, R. Yu, and H. Yan, "Preparation of shape controlled SrTiO3 crystallites by sol–gel-hydrothermal method," Journal of Crystal Growth, vol. 292, pp. 159-164, 2006.
    [106] G. Pajonk, "Drying methods preserving the textural properties of gels," Journal de Physique Colloques, vol. 50, pp. 13-22, 1989.
    [107] 曾為隆、施劭儒, "表面改質鈦酸鍶粉體在不同溫度下對燒結行為之影響," 2016 Taiwan ceramics society conference, National Taiwan University of Science and Technology, 2016.
    [108] 陳映璉, "Powder preparation, sintering behavior and thermoelectric properties of La-doped strontium titanate," Master, Department of Materials Science and Engineering, National Cheng Kung University, 2015.
    [109] M. Schie, R. Waser, and R. A. D. Souza, "A Simulation Study of Oxygen-Vacancy Behavior in Strontium Titanate: Beyond Nearest-Neighbor Interactions," The Journal of Physical Chemistry C, vol. 118, pp. 15185-15192, 2014.
    [110] O. Kienzle, M. Exner, and F. Ernst, "Atomistic structure of ∑ = 3, (111) grain boundaries in strontium titanate," Physica Status Solid (A) Applied Research, vol. 166, pp. 57-71, 1998.
    [111] http://cwb.gov.tw/V7/climate/climate_info/climate_change_6-3.html
    [112] http://euanmearns.com/global-energy-trends-bp-statistical-review-2014

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE