| 研究生: |
李沂秦 Li, Yi Chin |
|---|---|
| 論文名稱: |
塑膠回收料中有意和非有意添加物質的非目標分析及用為食品接觸材之可行性研究 Study on non-target analysis of intentionally and non intentionally added substances from recovery plastic and the feasibility evaluation for food contact materials |
| 指導教授: |
李俊璋
Lee, Ching-Chang |
| 共同指導教授: |
張偉翔
Chang, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 食品安全衛生暨風險管理研究所 Department of Food Safety / Hygiene and Risk Management |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 356 |
| 中文關鍵詞: | 非目標分析 、有意添加物質 、非有意添加物質 、再製塑膠 、食品接觸材 、挑戰測試 、安全性評估 |
| 外文關鍵詞: | Non-target analysis, Intentionally added substances, Non intentionally added substances, Recycled plastic, Food contact materials, Challenge test, Safety assessment |
| 相關次數: | 點閱:139 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
塑膠食品接觸材料(Food Contact Material, FCM)由於其優異的性能及便利性,國際與國內生產及使用量皆逐年急遽增長,根據2021年歐洲塑膠市場研究小組(Plastics Europe Market Research Group, PEMRG)報告之統計,塑膠材需求量依序為PP(聚丙烯),其次為LDPE(低密度聚乙烯),再次之為HDPE(高密度聚乙烯),然而這些塑膠FCM使用後將造成大量的塑膠廢棄物,進而導致生態系統惡化衍生環境危害,為因應這些環境問題,循環經濟已成為各國推展的目標,其中將再生料替代原生料使用即為其中一項。此作法雖環保,但使用過之塑膠食品接觸材在回收、處理及再製過程中可能會比原生塑膠食品接觸材暴露更多危害物質,因此需確認回收再製過程能否去除這些可能的污染物質,避免造成人體危害。回收再製塑膠食品接觸材中,可能遷移的物質分為兩大類,即有意添加物質(Intentionally Added Substances, IAS)及非有意添加物質(Non-Intentionally Added Substances, NIAS),其中IAS為塑膠回收再製時須添加之物質,而NIAS可能為添加劑之降解產物、製程之副產物或回收再製之污染物等,其存在無法預料,且可能為對人體有害之物質。有鑑於此,近年來,進行塑膠回收料中IAS及NIAS檢測之非目標物分析極受關注。目前各國研究已於使用塑膠回收料製造之FCM中測得多種IAS及NIAS,但其研究多集中為歐洲,使用之樣本大多也僅以回收PET為主,且僅針對最終成品進行量測,考量各國間塑膠回收料中存有物質可能不同、回收再製製程中各步驟對塑膠回收料成品中IAS與NIAS之影響,以及再製塑膠料PP及HDPE未來使用於塑膠FCM之可能性,本研究之目的為建立以氣相層析質譜儀(GC-MS)與液相層析四極柱串聯時間飛行式質譜儀(LC-QTOF)之非標的物分析流程,鑑別塑膠回收料PP(以下簡稱rPP)及HDPE(以下簡稱rHDPE)中IAS及NIAS之分析方法,確認我國rPP及rHDPE中IAS及NIAS化合物種類,探討回收製程各步驟中對去除IAS及NIAS之影響,並針對定性結果中優先測得之鄰苯二甲酸酯類、苯類、醛酮類、全氟烷基化合物,以及有機磷耐燃劑等物質進行定量分析,瞭解其濃度分布,最後進行歐盟之安全性評估,以確認rPP與rHDPE再製為FCM之妥適性。
本研究與國內一間回收廠進行合作,收集國內之回收食品接觸材HDPE牛奶瓶與PP飲料瓶,並於有去味與無去味兩種製程各別設置7個與6個採樣點,將樣本以二氯甲烷進行萃取後,吹氮濃縮並以甲醇回溶,過濾後以GC-MS及LC-QTOF各別上機分析,並配合NIST20質譜資料庫、MassBank質譜資料庫,以及自建質譜資料庫(In-house database)進行辨識,經過上述定性分析後,自結果中選定鄰苯二甲酸酯類、苯類、醛酮類、全氟烷基化合物,以及有機磷耐燃劑進行定量,最後進行歐盟之安全性評估,藉由其中挑戰測試所得之擬似污染物殘留濃度,計算再製製程之去污效率,並與模擬殘留濃度比較。
本研究共採集rPP與rHDPE各39份樣本,於GC-MS定性分析結果中共測得10個IAS及1034個NIAS,其中物質種類以Hydrocarbon(碳氫化合物)為最多,Esters(酯類)次之,Alcohol(醇類)佔居第三,以Total peak area為去污指標來看該再製製程對rPP材質及rHDPE材質中物質含量之影響,可發現兩種材質之Total peak area於造粒前之清洗整體呈上升趨勢,但於造粒後皆有明顯下降趨勢,LC-QTOF定性分析結果中共測得8個IAS及2533個NIAS,物質種類以Esters(酯類)為最多,Ketone(酮類)及Acid(酸類)次之,rPP材質及rHDPE材質之Total peak area於造粒前之清洗與造粒後整體皆呈下降趨勢。
定量結果顯示,鄰苯二甲酸酯類以DINP有較高的檢出率及濃度,在解包後樣本以DINP平均濃度最高(4.46 μg/g);瓶片樣本以DINP平均濃度最高(7.29 μg/g);酯粒樣本以DINP平均濃度最高(0.74 μg/g),將其進行Mann-Whitney U檢定,清洗前瓶片相對清洗後瓶片樣本中DINP濃度並無統計上差異,於清洗前瓶片相對酯粒樣本則有顯著差異,平均去污效率為83.39%。苯類檢出率及濃度較高之物質為toluene,在解包後樣本以toluene平均濃度最高(0.28 μg/g);瓶片樣本以toluene平均濃度最高(0.36 μg/g);酯粒樣本以toluene平均濃度最高(0.27 μg/g),toluene於清洗前瓶片相對清洗後瓶片樣本以及酯粒樣本之濃度皆無統計上的差異,表示再製製程對於苯類雖不具明顯清洗效果,但於最終產物中最高濃度之苯類化合物toluene平均濃度也遠低於1μg/g。醛酮類以acetaldehyde有較高的檢出率及濃度,在解包後樣本acetaldehyde平均濃度最高(6.08 μg/g);瓶片樣本以acetaldehyde平均濃度最高(1.18 μg/g);酯粒樣本以acetaldehyde平均濃度最高(0.65 μg/g),於清洗前瓶片相對清洗後瓶片樣本以及酯粒樣本,acetaldehyde濃度皆具顯著差異,其去污效率分別為80.68%與89.27%。全氟烷基化合物檢出率及濃度較高之物質為PFODA,解包後樣本以PFODA平均濃度最高(7.01 ng/g);瓶片樣本以PFODA平均濃度最高(6.63 ng/g);酯粒樣本以PFODA平均濃度最高(7.88 ng/g),PFODA於清洗前瓶片相對清洗後瓶片樣本以及酯粒樣本之濃度皆無統計上的差異,代表再製製程對於全氟烷基化合物雖無明顯清洗效力,但最終產物中最高濃度之全氟烷基化合物PFODA平均濃度也低於10 ng/g。有機磷耐燃劑檢出率及濃度較高之物質為TBOEP,解包後樣本以TBOEP平均濃度最高(10.54 ng/g);瓶片樣本以TNBP平均濃度最高(2.15 ng/g);酯粒樣本以EHDPP平均濃度最高(0.68 ng/g),TBOEP於清洗前瓶片相對清洗後瓶片樣本中濃度並無統計上差異,於清洗前瓶片相對酯粒濃度則具顯著差異,其平均去污效率為 93.9%,綜上所述,由結果可知造粒於再製製程中確實有其必要性。
安全性評估中挑戰測試結果顯示,浸泡之四種擬似污染物甲苯、二苯酮、氯仿、二十四烷中,浸泡之四種擬似污染物甲苯、二苯酮、氯仿、二十四烷中,以甲苯於rHDPE及rPP之酯粒中具有較高的殘留濃度,且rPP酯粒之殘留濃度較rHDPE酯粒高出1-22倍,將結果套入去污效率之公式後,可得該再製製程對回收塑膠材rHDPE材質及rPP材質之去污效率皆達99%以上,最後將計算得之Cres,與本研究建立之四種擬似污染物於rPP材質及rHDPE材質中的Cmod進行比較,結果可發現所有物質之Cres皆遠低於Cmod,證明該再製製程具足夠之去污效果,其再製酯粒造成人體危害之機率甚微,同時也代表回收塑膠材rHDPE及rPP兩種材質再製為酯粒後,將其使用於FCM確實有其可行性。
In recent years, the use of plastic food contact materials (FCM) has increased, especially polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). Based on the concept of circular economy, recycled plastic should be used in plastic bottles following the regulation of the directive EU 2019/904 issued by European Union. However, these plastic FCMs made by recycled plastics may have a risk to harm human health because they may be contaminated by intentionally added substances (IAS) and non-intentionally added substances (NIAS) during the misuse or recycling process. These contaminants may migrate to the food. Therefore, the present research aimed to establish a method by conducting qualitative and quantitative analysis to identify IAS and NIAS in recycled plastic FCM by GC-MS and LC-QTOF. Moreover, the safety assessment was implemented to check the feasibility that recycled plastic materials could be used as FCM.
In the qualitative analysis of the material test, A total of 10 IAS and 1034 NIAS were detected by GC-MS, and Hydrocarbon was the most species of substances; while a total of 8 IAS and 2533 NIAS were detected by LC-QTOF, and the most species of substances was Esters. In the quantitative analysis of the material test, the highest concentration substances were TBOEP, PFODA, Acetaldehyde, Toluene, and DINP. Finally, through the challenge test, it shows that the decontamination efficiency of the recycling process for the rHDPE and rPP is above 99.9%, and the safety assessment confirms the feasibility that rPP and rHDPE could be used as FCMs.
Agency for Toxic Substances and Disease Registry. 1982. 2-ethylhexyl diphenyl phosphate-short-term toxicity to aquatic invertebrates.
Agency for Toxic Substances and Disease Registry. 2022. Minimal risk levels (mrls) for hazardous substances.
Agrawal AK, Singh SK, Utreja A. 2004. Effect of hydroperoxide decomposer and slipping agent on recycling of polypropylene. Journal of applied polymer science 92:3247-3251.
Alin J, Hakkarainen M. 2011a. Microwave heating causes rapid degradation of antioxidants in polypropylene packaging, leading to greatly increased specific migration to food simulants as shown by esi-ms and gc-ms. J Agric Food Chem 59:5418-5427.
Amiridou D, Voutsa D. 2011. Alkylphenols and phthalates in bottled waters. Journal of hazardous materials 185:281-286.
Aparicio JL, Elizalde M. 2015. Migration of photoinitiators in food packaging: A review. Packaging Technology and Science 28:181-203.
Awaja F, Pavel D. 2005. Recycling of PET. European polymer journal 41:1453-1477.Bach C, Dauchy X, Chagnon M-C, Etienne S. 2012. Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed. Water research 46:571-583.
Barnes JS, Nguyen HP, Shen S, Schug KA. 2009. General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography–electrospray ionization-ion trap-time of flight-mass spectrometry. Journal of Chromatography A 1216:4728-4735.
Bengtström L, Rosenmai AK, Trier X, Jensen LK, Granby K, Vinggaard AM, et al. 2016. Non-targeted screening for contaminants in paper and board food-contact materials using effect-directed analysis and accurate mass spectrometry. Food Additives & Contaminants: Part A 33:1080-1093.
Bentayeb K, Ackerman LK, Begley TH. 2012. Ambient ionization–accurate mass spectrometry (ami-ams) for the identification of nonvisible set-off in food-contact materials. Journal of agricultural and food chemistry 60:1914-1920.
Bhaskar T, Mitan NMM, Onwudili JA, Muto A, Williams PT, Sakata Y. 2010. Effect of polyethylene terephthalate (PET) on the pyrolysis of brominated flame retardant-containing high-impact polystyrene (hips-br). Journal of Material Cycles and Waste Management 12:332-340.
Biedermann M, Castillo R, Riquet AM, Grob K. 2014. Comprehensive two-dimensional gas chromatography for determining the effect of electron beam treatment of polypropylene used for food packaging. POLYMER DEGRADATION AND STABILITY 99:262-273.
Biedermann M, Castillo R, Riquet A-M, Grob K. 2014. Comprehensive two-dimensional gas chromatography for determining the effect of electron beam treatment of polypropylene used for food packaging. Polymer Degradation and Stability 99:262-273.
Biedermann M, Grob K. 2013. Assurance of safety of recycled paperboard for food packaging through comprehensive analysis of potential migrants is unrealistic. Journal of Chromatography A 1293:107-119.
Blazquez-Blazquez E, Cerrada ML, Benavente R, Perez E. 2020. Identification of additives in polypropylene and their degradation under solar exposure studied by gas chromatography-mass spectrometry. ACS Omega 5:9055-9063.
Brack W, Schmitt-Jansen M, Machala M, Brix R, Barceló D, Schymanski E, et al. 2008. How to confirm identified toxicants in effect-directed analysis. Analytical and bioanalytical chemistry 390:1959-1973.
Brandon JA, Jones W, Ohman MD. 2019. Multidecadal increase in plastic particles in coastal ocean sediments. Science advances 5:eaax0587.
Cabanes A, Fullana A. 2021. New methods to remove volatile organic compounds from post-consumer plastic waste. Science of The Total Environment 758:144066.
Cabanes A, Valdés FJ, Fullana A. 2020. A review on vocs from recycled plastics. Sustainable Materials and Technologies 25:e00179.
Camacho W, Karlsson S. 2000. Quality-determination of recycled plastic packaging waste by identification of contaminants by gc–ms after microwave assisted extraction (mae). Polymer degradation and stability 71:123-134.
Canellas E, Nerín C, Moore R, Silcock P. 2010. New uplc coupled to mass spectrometry approaches for screening of non-volatile compounds as potential migrants from adhesives used in food packaging materials. Analytica chimica acta 666:62-69.
Canellas E, Vera P, Domeño C, Alfaro P, Nerín C. 2012. Atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry as a powerful tool for identification of non intentionally added substances in acrylic adhesives used in food packaging materials. Journal of Chromatography A 1235:141-148.
Canellas E, Vera P, Nerín C, Dreolin N, Goshawk J. 2020. Ion mobility quadrupole time-of-flight high resolution mass spectrometry coupled to ultra-high pressure liquid chromatography for identification of non-intentionally added substances migrating from food cans. Journal of Chromatography A 1616:460778.
Canellas E, Vera P, Nerín C. 2017. Migration assessment and the ‘threshold of toxicological concern’applied to the safe design of an acrylic adhesive for food-contact laminates. Food Additives & Contaminants: Part A 34:1721-1729.
Canellas E, Vera P, Nerin C. 2019. Ion mobility quadrupole time-of-flight mass spectrometry for the identification of non-intentionally added substances in uv varnishes applied on food contact materials. A safety by design study. Talanta 205:120103.
Carrero-Carralero C, Escobar-Arnanz J, Ros M, Jiménez-Falcao S, Sanz ML, Ramos L. 2019. An untargeted evaluation of the volatile and semi-volatile compounds migrating into food simulants from polypropylene food containers by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Talanta 195:800-806.
Casuga FP, Castillo AL, Corpuz MJ-AT. 2016. Gc–ms analysis of bioactive compounds present in different extracts of an endemic plant broussonetia luzonica (blanco)(moraceae) leaves. Asian Pacific Journal of Tropical Biomedicine 6:957-961.
Cecon VS, Da Silva PF, Curtzwiler GW, Vorst KL. 2021. The challenges in recycling post-consumer polyolefins for food contact applications: A review. Resources, Conservation and Recycling 167:105422.
Chen Z, Lin Q-B, Song X-C, Chen S, Zhong H-N, Nerin C. 2020. Discrimination of virgin and recycled polyethylene based on volatile organic compounds using a headspace GC-MS coupled with chemometrics approach. Food Packaging and Shelf Life 26:100553.
Chen Z, Lin Q, Su Q, Zhong H-N, Nerin C. 2021. Identification of recycled polyethylene and virgin polyethylene based on untargeted migrants. Food Packaging and Shelf Life 30:100762.
Choi W, Lee S, Lee H-K, Moon H-B. 2020. Organophosphate flame retardants and plasticizers in sediment and bivalves along the korean coast: Occurrence, geographical distribution, and a potential for bioaccumulation. Marine Pollution Bulletin 156:111275.
Chow W, Tham W. 2009. Effects of antistatic agent on the mechanical, morphological and antistatic properties of polypropylene/organo-montmorillonite nanocomposites. Express Polym Lett 3:116-125.
Clemente I, Aznar M, Nerín C, Bosetti O. 2016. Migration from printing inks in multilayer food packaging materials by gc-ms analysis and pattern recognition with chemometrics. Food Additives & Contaminants: Part A 33:703-714.
Commission E. 2019. Assessment report of the voluntary pledges under annex iii of the European strategy for plastics in a circular economy.
Company TGS. 2018. The good scents company information system.
Coniglio MA, Fioriglio C, Laganà P. 2020. Polyethylene terephthalate. In: Non-intentionally added substances in PET-bottled mineral water:Springer, 29-41.
Cordewener JH, Luykx DM, Frankhuizen R, Bremer MG, Hooijerink H, America AH. 2009. Untargeted lc‐q‐tof mass spectrometry method for the detection of adulterations in skimmed‐milk powder. Journal of Separation Science 32:1216-1223.
Coulier L, Orbons HG, Rijk R. 2007. Analytical protocol to study the food safety of (multiple-) recycled high-density polyethylene (HDPE) and polypropylene (PP) crates: Influence of recycling on the migration and formation of degradation products. Polymer degradation and stability 92:2016-2025.
Cui G, Niu Y, Wang H, Dong J, Yuki H, Chen S. 2012. Rapid isolation and identification of active antioxidant ingredients from gongju using hplc-dad-esi-ms n and postcolumn derivatization. Journal of agricultural and food chemistry 60:5407-5413.
D’eon JC, Crozier PW, Furdui VI, Reiner EJ, Libelo EL, Mabury SA. 2009. Observation of a commercial fluorinated material, the polyfluoroalkyl phosphoric acid diesters, in human sera, wastewater treatment plant sludge, and paper fibers. Environmental science & technology 43:4589-4594.
Da Silva Oliveira W, Ubeda S, Nerin C, Padula M, Godoy HT. 2019. Identification of non-volatile migrants from baby bottles by uplc-q-tof-ms. Food Research International 123:529-537.
Domeno C, Canellas E, Alfaro P, Rodriguez-Lafuente A, Nerin C. 2012. Atmospheric pressure gas chromatography with quadrupole time of flight mass spectrometry for simultaneous detection and quantification of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in mosses. Journal of Chromatography A 1252:146-154.
Dutra C, Pezo D, de Alvarenga Freire MT, Nerín C, Reyes FGR. 2011. Determination of volatile organic compounds in recycled polyethylene terephthalate and high-density polyethylene by headspace solid phase microextraction gas chromatography mass spectrometry to evaluate the efficiency of recycling processes. Journal of chromatography A 1218:1319-1330.
Dutra C, Pezo D, Freire MT, Nerin C, Reyes FG. 2011a. Determination of volatile organic compounds in recycled polyethylene terephthalate and high-density polyethylene by headspace solid phase microextraction gas chromatography mass spectrometry to evaluate the efficiency of recycling processes. J Chromatogr A 1218:1319-1330.
Dreolin N, Aznar M, Moret S, Nerin C. 2019. Development and validation of a lc–ms/ms method for the analysis of bisphenol a in polyethylene terephthalate. Food Chemistry 274:246-253.
European Food Safety Authority. 2009. Scientific opinion of EFSA prepared by the panel on food contact materials, enzymes, flavourings and processing aids (cef) on toxicological evaluation of benzophenone. The EFSA Journal 1104:1-30.
European Food Safety Authority. 2011. Scientific opinion on the criteria to be used for safety evaluation of a mechanical recycling process to produce recycled PET intended to be used for manufacture of materials and articles in contact with food.
European Food Safety Authority. 2012. PET recycling processes for food contact materials: EFSA adopts first opinions.
European Food Safety Authority. 2013. Annual report of the EFSA journal 2012.European Food Safety Authority. 2016. Safety assessment of the process ‘pokas arcadian recycle ltd’ used to recycle polypropylene (PP) and high-density polyethylene (HDPE) articles for use as food contact material.
European Food Safety Authority. 2015. Scientific opinion on the safety assessment of the processes ‘biffa polymers’ and ‘clrrhdpe’ used to recycle high-density polyethylene bottles for use as food contact material.
European Food Safety Authority. 2018. Safety assessment of the process‘morssinkhof plastics’,used to recycle high-density polyethylene andpolypropylene crates for use as food contact materials. EFSA Journal.
European Union. 2011. Commission regulation (EU) No 10/2011.
Eurostat. 2019. Recycling rate of municipal waste. Available:https://ec.europa.eu/eurostat/databrowser/view/t2020_rt120/default/table?lang=en. [accessed May, 1 2022].
Evans A, O'Donovan C, Playdon M, Beecher C, Beger RD, Bowden JA, et al. 2020. Dissemination and analysis of the quality assurance (qa) and quality control (qc) practices of lc-ms based untargeted metabolomics practitioners. Metabolomics 16:113.
Fabris S, Freire M, Wagner R, Reyes FG. 2010. A method to determine volatile contaminants in polyethylene terephthalate (PET) packages by hdc-gc-fid and its application to post-consumer materials. CIENCIA E TECNOLOGIA DE ALIMENTOS 30:1046-1055.
Félix J, Alfaro P, Nerín C. 2011. Pros and cons of analytical methods to quantify surrogate contaminants from the challenge test in recycled polyethylene terephthalate. Analytica chimica acta 687:67-74.
Fiehn O. 2016. Metabolomics by gas chromatography-mass spectrometry: Combined targeted and untargeted profiling. Curr Protoc Mol Biol 114:30.34.31-30.34.32.
Fisher M, Arbuckle TE, MacPherson S, Braun JM, Feeley M, Gaudreau Er. 2019. Phthalate and bpa exposure in women and newborns through personal care product use and food packaging. Environmental Science & Technology 53:10813-10826.
Font R, Aracil I, Fullana A, Conesa JA. 2004. Semivolatile and volatile compounds in combustion of polyethylene. Chemosphere 57:615-627.
Franz R, Welle F. 2002. Recycled poly (ethylene terephthalate) for direct food contact applications: Challenge test of an inline recycling process. Food Additives & Contaminants 19:502-511.
Franz R, Welle F. 2020. Contamination levels in recollected PET bottles from non-food applications and their impact on the safety of recycled PET for food contact. Molecules 25:4998.
Freire M, Castle L, Reyes F, Damant A. 1998. Thermal stability of polyethylene terephthalate food contact materials: Formation of volatiles from retail samples and implications for recycling. Food Additives & Contaminants 15:473-480.
Fuller J, White D, Yi H, Colley J, Vickery Z, Liu S. 2020. Analysis of volatile compounds causing undesirable odors in a polypropylene-high-density polyethylene recycled plastic resin with solid-phase microextraction. Chemosphere 260:127589.
Gallart-Ayala H, Núñez O, Lucci P. 2013. Recent advances in lc-ms analysis of food-packaging contaminants. TrAC Trends in Analytical Chemistry 42:99-124.
García Ibarra V, Rodríguez Bernaldo de Quirós A, Paseiro Losada P, Sendón R. 2018. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products. Analytical and bioanalytical chemistry 410:3789-3803.
Geueke B, Groh K, Muncke J. 2018. Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. Journal of Cleaner Production 193:491-505.
Glenn G, Shogren R, Jin X, Orts W, Hart‐Cooper W, Olson L. 2021. Per‐and polyfluoroalkyl substances and their alternatives in paper food packaging. Comprehensive Reviews in Food Science and Food Safety 20:2596-2625.
Guo R, Sim W-J, Lee E-S, Lee J-H, Oh J-E. 2010. Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants. Water research 44:3476-3486.
Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179-199.
Haider N, Karlsson S. 2001. Loss of chimassorb 944 from LDPE and identification of additive degradation products after exposure to water, air and compost. Polymer degradation and stability 74:103-112.
Hamid S. 2000. Handbook of polymer degradation, 2 ed.
He Q, Yan Y, Li H, Zhang Y, Chen L, Wang Y. 2015. Characteristics and reactivity of volatile organic compounds from non-coal emission sources in china. Atmospheric Environment 115:153-162.
Hernandez F, Sancho JV, Ibáñez M, Grimalt S. 2008. Investigation of pesticide metabolites in food and water by lc-tof-ms. TrAC Trends in Analytical Chemistry 27:862-872.
Hodgkin J, Galbraith M, Chong Y. 1982. Combustion products from burning polyethylene. Journal of Macromolecular Science—Chemistry 17:35-44.
Hoffman K, Webster TF, Bartell SM, Weisskopf MG, Fletcher T, Vieira VM. 2011. Private drinking water wells as a source of exposure to perfluorooctanoic acid (pfoa) in communities surrounding a fluoropolymer production facility. Environmental health perspectives 119:92-97.
Horodytska O, Cabanes A, Fullana A. 2020. Non-intentionally added substances (nias) in recycled plastics. Chemosphere 251:126373.
Huber S. 2011. Super-clean PET flake process for high quality recycling of PET bottles.
Ibarra V, de Quiros ARB, Losada PP, Sendon R. 2019. Non-target analysis of intentionally and non intentionally added substances from plastic packaging materials and their migration into food simulants. Food Packaging and Shelf Life 21:100325.
Innes J. 2003. Plastic flame retardants: Technology and current developments:iSmithers Rapra Publishing.
Isella F, Canellas E, Bosetti O, Nerin C. 2013. Migration of non intentionally added substances from adhesives by uplc–q‐tof/ms and the role of evoh to avoid migration in multilayer packaging materials. Journal of Mass Spectrometry 48:430-437.
Jambeck J, Geyer R, Wilcox C, Siegler T, Perryman M, Andrady A, et al. 2015. Plastic waste inputs from land into the ocean. Science 347:768-771.
Kaboré H, Duy SV, Munoz G, Méité L, Desrosiers M, Liu J, et al. 2018. Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. Science of The Total Environment 616:1089-1100.
Kassouf A, Maalouly J, Chebib H, Rutledge DN, Ducruet V. 2013. Chemometric tools to highlight non-intentionally added substances (nias) in polyethylene terephthalate (PET). Talanta 115:928-937.
Kaufmann A. 2012. The current role of high-resolution mass spectrometry in food analysis. Analytical and bioanalytical chemistry 403:1233-1249.
Konkol L, Cross R, Harding I, Kosior E. 2003. Contaminants and levels of occurrence in washed and shredded poly (ethylene terephthalate) from curbside collection. Part 1: Extraction conditions. Food Additives & Contaminants 20:859-874.
Korobeinichev O, Paletsky A, Kuibida L, Gonchikzhapov M, Shundrina I. 2013. Reduction of flammability of ultrahigh-molecular-weight polyethylene by using triphenyl phosphate additives. Proceedings of the Combustion Institute 34:2699-2706.
Kosswig K. 2000. Surfactants. Ullmann's encyclopedia of industrial chemistry.
Kotthoff M, Müller J, Jürling H, Schlummer M, Fiedler D. 2015. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environmental Science and Pollution Research 22:14546-14559.
Krauss M, Singer H, Hollender J. 2010. Lc–high resolution ms in environmental analysis: From target screening to the identification of unknowns. Analytical and bioanalytical chemistry 397:943-951.
Kubica D, Bal K, Kaczmarczyk M, Kaszuba A. 2018. Determination of volatile organic compounds in materials from polystyrene intended for contact with food: Comparison of hs-gs/ms and spme-gc/ms techniques. Roczniki Państwowego Zakładu Higieny 69.
Kyle PB. 2017. Chapter 7 - toxicology: Gcms. In: Mass spectrometry for the clinical laboratory, (Nair H, Clarke W, eds). San Diego:Academic Press, 131-163.
Laboratories F. 2020. Additive library list.
Laboratory C, Bradley E, Coulier L. An investigation into the reaction and breakdown products from starting substances used to produce food contact plastics. 2007, CSL.
Lacorte S, Fernandez‐Alba AR. 2006. Time of flight mass spectrometry applied to the liquid chromatographic analysis of pesticides in water and food. Mass spectrometry reviews 25:866-880.
Lau O-W, Wong S-K. 2000. Contamination in food from packaging material. Journal of chromatography A 882:255-270.
Lerch M, Nguyen KH, Granby K. 2022. Is the use of paper food contact materials treated with per-and polyfluorinated alkyl substances safe for high-temperature applications?–migration study in real food and food simulants. Food Chemistry:133375.
Lexow M, Drummer D. 2016. New materials for sls: The use of antistatic and flow agents. Journal of powder Technology 2016.
Li B, Wang Z-W, Lin Q-B, Hu C-Y. 2016. Study of the migration of stabilizer and plasticizer from polyethylene terephthalate into food simulants. Journal of chromatographic science 54:939-951.
Li Y, Li C, Xiao D, Liang F, Chen Z, Schen X, et al. 2013. Determination of migration of 25 primary aromatic amines from food contact plastic materials by gas chromatography-mass spectrometry. Se pu= Chinese journal of chromatography 31:46-52.
Liao W, Draper WM, Perera SK. 2008. Identification of unknowns in atmospheric pressure ionization mass spectrometry using a mass to structure search engine. Analytical chemistry 80:7765-7777.
Lim S, Shin H, Yoon K, Kwack S, Um Y, Hyeon J, et al. 2014. Risk assessment of volatile organic compounds benzene, toluene, ethylbenzene, and xylene (btex) in consumer products. Journal of Toxicology and Environmental Health, Part A 77:1502-1521.
Lin Q, Cai L, Wu S, Yang X, Chen Z, Zhou S, et al. 2015. Determination of four types of hazardous chemicals in food contact materials by uhplc‐ms/ms. Packaging Technology and Science 28:461-474.
Lithner D, Larsson Å, Dave G. 2011. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the total environment 409:3309-3324.
Lord R. 2016. Plastics and sustainability: A valuation of environmental benefits, costs and opportunities for continuous improvement. Trucost is an affiliate of S&P Global Market Intelligence (2020 S&P Trucost Limited, an affiliate of S&P Global Market Intelligence).
Maga JA, Katz I. 1976. Lactones in foods. Critical Reviews in Food Science and Nutrition 8:1-56.
Maga JA, Katz I. 1979. Furans in foods. Critical Reviews in Food Science and Nutrition 11:355-400.
Markarian J. 2007. Pvc additives–what lies ahead? Plastics, Additives and Compounding 9:22-25.
Martínez-Bueno M, Cimmino S, Silvestre C, Tadeo J, García-Valcárcel A, Fernández-Alba A, et al. 2016. Characterization of non-intentionally added substances (nias) and zinc oxide nanoparticle release from evaluation of new antimicrobial food contact materials by both lc-qtof-ms, gc-qtof-ms and icp-ms. Analytical Methods 8:7209-7216.
Martínez-Bueno M, Ramos M, Bauer A, Fernández-Alba A. 2019. An overview of non-targeted screening strategies based on high resolution accurate mass spectrometry for the identification of migrants coming from plastic food packaging materials. TrAC Trends in Analytical Chemistry 110:191-203.
Martínez-Bueno M, Gómez Ramos M, Bauer A, Fernández-Alba A. 2019. An overview of non-targeted screening strategies based on high resolution accurate mass spectrometry for the identification of migrants coming from plastic food packaging materials. TrAC Trends in Analytical Chemistry 110:191-203.
Monaci L, Nørgaard J, van Hengel A. 2010. Feasibility of a capillary lc/esi-q-tof ms method for the detection of milk allergens in an incurred model food matrix. Analytical Methods 2:967-972.
Mutsuga M, Kawamura Y, Sugita-Konishi Y, Hara-Kudo Y, Takatori K, Tanamoto K. 2006. Migration of formaldehyde and acetaldehyde into mineral water in polyethylene terephthalate (PET) bottles. Food additives and contaminants 23:212-218.
Nasser A, Lopes L, Eberlin M, Monteiro M. 2005. Identification of oligomers in polyethyleneterephthalate bottles for mineral water and fruit juice. Development and validation of a high-performance liquid chromatographic method for the determination of first series cyclic trimer. J Chromatogr A 1097:130-137.
Nerin C, Albiñana J, Philo MR, Castle L, Raffael B, Simoneau C. 2003. Evaluation of some screening methods for the analysis of contaminants in recycled polyethylene terephthalate flakes. Food Addit Contam 20:668-677.
Nerin C, Alfaro P, Aznar M, Domeño C. 2013. The challenge of identifying non-intentionally added substances from food packaging materials: A review. Analytica Chimica Acta 775:14-24.
Nisticò R. 2020. Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing:106707.
OGAWA H. 2009. Review on development of polypropylene manufacturing process.
Omer E, Cariou R, Remaud G, Guitton Y, Germon H, Hill P, et al. 2018. Elucidation of non-intentionally added substances migrating from polyester-polyurethane lacquers using automated lc-hrms data processing. Analytical and bioanalytical chemistry 410:5391-5403.
Organisations PEatEAoPRaR. 2021. Plastics - the facts 2021.
Özlem* KE. 2008. Acetaldehyde migration from polyethylene terephthalate bottles into carbonated beverages in türkiye. International journal of food science & technology 43:333-338.
Paiva R, Wrona M, Nerín C, Veroneze IB, Gavril G-L, Cruz SA. 2021. Importance of profile of volatile and off-odors compounds from different recycled polypropylene used for food applications. Food Chemistry 350:129250.
Palkopoulou S, Joly C, Feigenbaum A, Papaspyrides CD, Dole P. 2016. Critical review on challenge tests to demonstrate decontamination of polyolefins intended for food contact applications. Trends in Food Science & Technology 49:110-120.
Papazoglou ES. 2004. Flame retardants for plastics. In: Handbook of building materials for fire protection:McGraw-Hill New York, 4.1-4.88.
Paravisini L, Prot A, Gouttefangeas C, Moretton C, Nigay H, Dacremont C, et al. 2015. Characterisation of the volatile fraction of aromatic caramel using heart-cutting multidimensional gas chromatography. Food Chemistry 167:281-289.
Peters R, Stolker A, Mol J, Lommen A, Lyris E, Angelis Y, et al. 2010. Screening in veterinary drug analysis and sports doping control based on full-scan, accurate-mass spectrometry. TrAC Trends in Analytical Chemistry 29:1250-1268.
Piringer O. 1994. Evaluation of plastics for food-packaging. Food Additives And Contaminants 11:221-230.
Pivnenko K, Eriksen MK, Martín-Fernández JA, Eriksson E, Astrup TF. 2016. Recycling of plastic waste: Presence of phthalates in plastics from households and industry. Waste Management 54:44-52.
Pritchard G. 2012. Plastics additives: An az reference:Springer Science & Business Media.
Ramírez Carnero A, Lestido-Cardama A, Vazquez Loureiro P, Barbosa-Pereira L, Rodríguez Bernaldo de Quirós A, Sendón R. 2021. Presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in food contact materials (fcm) and its migration to food. Foods 10:1443.
Reemtsma T, Quintana JB, Rodil R, Garcı M, Rodrı I. 2008. Organophosphorus flame retardants and plasticizers in water and air i. Occurrence and fate. TrAC Trends in Analytical Chemistry 27:727-737
Reiner EJ, Jobst KJ, Megson D, Dorman FL, Focant J-F. 2014. Chapter 3 - analytical methodology of pops. In: Environmental forensics for persistent organic pollutants, (O’Sullivan G, Sandau C, eds). Amsterdam:Elsevier, 59-139.
Rusko J, Perkons I, Rasinger JD, Bartkevics V. 2020. Non-target and suspected-target screening for potentially hazardous chemicals in food contact materials: Investigation of paper straws. Food Additives & Contaminants: Part A 37:649-664.
Sablani SS. 2007. Food preservation and processing using membranes. In: Handbook of food preservation:CRC Press, 383-404.
Santonen TM, Mahiout S, Porras SP. 2019. Risk assessment of occupational exposure to dinp, didp and dphp in plastics sector. Toxicol Lett 314:S231.
Schecter A, Lorber M, Guo Y, Wu Q, Yun SH, Kannan K, et al. 2013. Phthalate concentrations and dietary exposure from food purchased in new york state. Environmental health perspectives 121:473-479.
Shrivastava A. 2018. 4 - additives for plastics. In: Introduction to plastics engineering, (Shrivastava A, ed):William Andrew Publishing, 111-141.
Simoneau C. 2010. Applicability of generally recognised diffusion models for the estimation of specific migration in support of EU directive 2002/72/ec. Retrieved from the website: http://publications jrc ec europa eu/repository/bitstream/111111111/14935/1/reqno_jrc59476_mathmod_v10_cs_2010_09_24_final pdf% 5B1% 5D pdf.
Skjevrak I, Brede C, Steffensen I-L, Mikalsen A, Alexander J, Fjeldal P, et al. 2005. Non-targeted multi-component analytical surveillance of plastic food contact materials: Identification of substances not included in EU positive lists and their risk assessment. Food additives and contaminants 22:1012-1022.
Solan M, Lavado R. 2022. The use of in vitro methods in assessing human health risks associated with short‐chain perfluoroalkyl and polyfluoroalkyl substances (PFAS). Journal of Applied Toxicology 42:1298-1309.
International Organization for Standardization. 2008. Iso 15270 plastics-guidelines for the recovery and recycling of plastics waste.
Song Y, Al-Taher F, Sadler G. 2003. Migration of volatile degradation products into ozonated water from plastic packaging materials. Food additives and contaminants 20:985-994.
Statista. 2021. Production of plastics worldwide from 1950 to 2019 (in million metric tons).
Suhrhoff TJ, Scholz-Böttcher BM. 2016. Qualitative impact of salinity, uv radiation and turbulence on leaching of organic plastic additives from four common plastics—a lab experiment. Marine pollution bulletin 102:84-94.
Integrated Risk Information System. 2001. Chemical assessment summary-chloroform.
Integrated Risk Information System. 2015. Chemical assessment summary-toluene.
Taylor P, Dellinger B, Lee C. 1990. Development of a thermal stability-based ranking of hazardous organic compound incinerability. Environmental science & technology 24:316-328.
Thoden V, Brouwer M, Stärker C, Welle F. 2020. Effect of recycled content and rpet quality on the properties of PET bottles, part ii: Migration. Packaging Technology and Science 33:359-371.
Til H, Woutersen R, Feron V, Clary J. 1988. Evaluation of the oral toxicity of acetaldehyde and formaldehyde in a 4-week drinking-water study in rats. Food and chemical toxicology 26:447-452.
Trier D, Taxvig C, Rosenmai AK, Pedersen GA. 2018. PFAS in paper and board for food contact.
Tsochatzis E, Lopes J, Hoekstra E, Emons H. 2020. Development and validation of a multi-analyte gc-ms method for the determination of 84 substances from plastic food contact materials. Analytical and bioanalytical chemistry 412:5419-5434.
Ubeda S, Aznar M, Nerín C. 2018. Determination of oligomers in virgin and recycled polyethylene terephthalate (PET) samples by uplc-ms-qtof. Analytical and bioanalytical chemistry 410:2377-2384.
United States Food and Drug Administration. 2021b. Guidance for industry: Use of recycled plastics in food packaging (chemistry considerations).
United States Food and Drug Administration. 2019. Indirect additives used in food contact substances.
United States Food and Drug Administration. 2020. Recycled plastics in food packaging. Available: https://www.fda.gov/food/packaging-food-contact-substances-fcs/recycled-plastics-food-packaging. [accessed March, 15 2022]
United States Environmental Protection Agency. 2021. Plastics: Material-specific data.
United States Environmental Protection Agency. 2021. FDA issues letter to industry on fluorinated polyethylene food contact containers.
United States Environmental Protection Agency. 2022. Code of federal regulations title 21-part 165-beverages.
United States Environmental Protection Agency. 2021. EPA releases testing data showing PFAS contamination from fluorinated containers.
United States Environmental Protection Agency. 2022. Per- and polyfluoroalkyl substances (PFAS) in pesticide and other packaging.
Vallejo A, Olivares M, Fernández L, Etxebarria N, Arrasate S, Anakabe E, et al. 2011. Optimization of comprehensive two dimensional gas chromatography-flame ionization detection–quadrupole mass spectrometry for the separation of octyl-and nonylphenol isomers. Journal of Chromatography A 1218:3064-3069.
Vera P, Canellas E, Nerín C. 2018. Identification of non volatile migrant compounds and nias in polypropylene films used as food packaging characterized by uplc-ms/qtof. Talanta 188:750-762.
Vera P, Canellas E, Nerín C. 2020. Compounds responsible for off-odors in several samples composed by polypropylene, polyethylene, paper and cardboard used as food packaging materials. Food chemistry 309:125792.
Welle DF. 2015. The facts about PET.
Welle F. 2005. Post-consumer contamination in high-density polyethylene (hdpe) milk bottles and the design of a bottle-to-bottle recycling process. Food additives and contaminants 22:999-1011.
Welle F. 2008. Decontamination efficiency of a new post-consumer poly (ethylene terephthalate)(PET) recycling concept. Food additives and contaminants 25:123-131.
Welle F. 2011. Twenty years of PET bottle to bottle recycling—an overview. Resources, Conservation and Recycling 55:865-875.
Wormuth M, Scheringer M, Vollenweider M, Hungerbühler K. 2006. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Analysis 26:803-824.
Yan M, Chen M, Meng X, Guo X, Bai H, Ma Q, et al. 2018. Determination of migration of perfluorooctanoic acid and perfluorooctane sulfonic acid from food contact materials by ionic liquid-based dispersive liquid-liquid microextraction and ultra-performance liquid chromatography-tandem mass spectrometry. Se pu= Chinese journal of chromatography 36:738-744.
Zhong X, Zhao X, Qian Y, Zou Y. 2018. Polyethylene plastic production process. Insight-Material Science 1:1-8.
Žnideršič L, Mlakar A, Prosen H. 2019. Development of a spme-gc-ms/ms method for the determination of some contaminants from food contact material in beverages. Food and Chemical Toxicology 134:110829.
中華民國經濟部統計處. 2022. 工業產銷存動態調查-產品統計. Available: https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDA.aspx [accessed May, 10 2022].
中華民國國家科學及技術委員會. 2017. 轉型蛻變中的石化. 科學發展.
台灣循環經濟與創新轉型協會. 2019. 歐盟禁塑令 歐盟議會:2021年起禁用一次性塑膠製品. Available:http://www.ceita.org.tw/%E6%AD%90%E7%9B%9F%E7%A6%81%E5%A1%91%E4%BB%A4%E6%AD%90%E7%9B%9F%E8%AD%B0%E6%9C%83%EF%BC%9A2021%E5%B9%B4%E8%B5%B7%E7%A6%81%E7%94%A8%E4%B8%80%E6%AC%A1%E6%80%A7%E5%A1%91%E8%86%A0%E8%A3%BD%E5%93%81/.[accessed March, 18 2022]
行政院環境保護署. 2014a. 一般廢棄物(垃圾)採樣方法.
行政院環境保護署. 2014b. 環境樣品採集及保存作業指引.
行政院環境保護署. 2017. 事業廢棄物採樣方法.
行政院環境保護署. 2021. 一般廢棄物回收率指標資料. Available: https://data.epa.gov.tw/dataset/stat_p_46. [accessed May, 3 2022].
食品藥物管理署食品組. 2013. 寶特瓶回收再製之技術探討. (食品藥物研究年報).
資源回收管理基金管理會. 2013. 各項資源回收物處理流程及再生產品. Available:https://epb2.tnepb.gov.tw/recycle/mode02.asp?m=201607251524321&t=sub [accessed March, 20 2022]
衛生福利部食品藥物管理署. 2013. 「食品器具容器包裝衛生標準」.
衛生福利部食品藥物管理署. 2021c. 認識、挑選及使用食品容器具. Available: https://plasticspackage.pidc.org.tw/learn-container-29.html. [accessed March, 5 2022]
衛生福利部食品藥物管理署. 2022. 「供作食品容器具包裝製造使用之 PET再製酯粒原料適宜性申請作業流程」
校內:2027-10-26公開