簡易檢索 / 詳目顯示

研究生: 周聖頴
Chou, Sheng-Ying
論文名稱: 主鏈含三聯苯及四乙二醇醚基團之高分子:合成、鑑定及光電應用
Polymers Composed of p-Terphenyl and Tetraethylene Glycol Ether: Synthesis, Characterization and Optoelectronic Application
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 100
中文關鍵詞: 高分子發光二極體電洞緩衝三聯苯四乙二醇醚光電元件
外文關鍵詞: PLEDs, hole buffer material, p-terphenyl, tetraethylene glycol ether
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機發光二極體是藉由從陽極及陰極注入電洞及電子,並在發光層中再結合進而放光。因此,載子注入及傳輸速率的平衡是影響電流效率最重要的因素。然而在大部分的有機共軛材料中,電洞傳輸速度通常較電子傳輸速度快,造成元件發光層內的載子不平衡,也因此導致電流效率往往不高。固本研究開發可利用溼式製程成膜的電洞緩衝材料,藉此減緩電洞進入發光層,以平衡發光層內的載子,提高電流效率。
    本研究利用Suzuki coupling reaction成功聚合出主鏈含三聯苯及四乙二醇醚基團之高分子3P5O做為電洞緩衝材料和主鏈含苯併咪唑及四乙二醇醚基團之高分子BZID5O,以核磁共振光譜(1H-NMR)、元素分析儀(EA)鑑定其結構。並討論3P5O和BZID5O之熱性質、光學性質、電化學性質、表面膜態與元件性質。然而BZID5O因溶解度和表面膜態不佳,無法在發光元件上有效運用。3P5O具有高熱裂解溫度(Td= 361.3 oC),薄膜態UV-Vis最大吸收與螢光光譜(PL)放光分別在276 nm和393 nm。由循環伏安法(Cyclic Voltammetry)量測計算出3P5O的LUMO能階(-2.15 eV)與HOMO能階(-5.86 eV)。而3P5O在PEDOT:PSS上的薄膜表面RMS roughness=1.35 nm。以3P5O當電洞緩衝層之發光元件結構為ITO/PEDOT:PSS/3P5O/SY/LiF/Al,在無電洞緩衝層之元件最大亮度為10017 cd/m2,最大電流效率為3.0 cd/A,而有電洞緩衝層之元件最大亮度為17050 cd/m2,最大電流效率為6.6 cd/A。其效果甚至較常見之電洞阻擋元件[ITO/PEDOT:PSS/SY/BCP/LiF/Al] (13639 cd/m2, 4.1 cd/A)表現出色。研究結果顯示3P5O擁有電洞緩衝的特性,且可以旋轉塗佈等溼式製程加工成膜製做多層元件,是改善元件電流效率的材料選擇之一。

    An efficient hole-buffer polymer (3P5O) composed of p-terphenyl and tetraethylene glycol ether and copolymer (BZID5O) based on benzimidazolyl and tetraethylene glycol ether were synthesized by Suzuki coupling reaction. Chemical structure of 3P5O and BZID5O were characterized by 1H-NMR and elemental analysis, whereas thermal, optical and electrochemical properties were investigated by DSC& TGA, optical spectra and cyclic voltammetry, respectively. Unfortunately, BZID5O could not apply to PLED device because of poor surface morphology of it. 3P5O was then employed as hole buffer layer, between hole-injection (PEDOT:PSS) and emission (SuperYellow: SY) layer to evaluate its potential application in polymer light-emitting diodes (PLEDs). The 3P5O exhibited good thermal stability with thermal decomposition temperature (5% weight loss) being above 361 oC in nitrogen atmosphere. In film state, it showed absorption and photo luminescence peaks at 276 nm and 393 nm respectively. The 3P5O should slow hole-transport ability attributable to its tetraethylene glycol ether functional group. The maximum luminance and current efficiency of multi-layer [ITO/PEDOT:PSS/3P5O/SY/LiF/Al(80 nm)], with 3P5O layer as hole buffer layer were 17050 cd/m2 and 6.6 cd/A respectively, which are much better than those without 3P5O (10017 cd/m2, 3.0 cd/A). The performance enhancement has been attributed mainly to hole buffer characteristics of 3P5O layer. Current results indicate that the 3P5O is not only an efficient hole buffer material but also applicable in fabricating multilayer PLEDs by wet processes such as spin-coating.

    目錄 摘要 I 誌謝 IX 目錄 X 流程目錄 XIII 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1. 前言 1 1-2. 理論基礎 5 1-2-1. 共軛導電高分子 5 1-2-2. 螢光理論 8 1-2-3. 影響螢光強度的因素 11 1-2-4. 能量轉移 13 1-2-5. 分子間激發態 15 1-3. 元件發光原理 17 1-3-1. 發光原理 17 第二章 文獻回顧 20 2-1. 元件結構 20 2-1-1. 單層元件 20 2-1-2. 多層元件 22 2-2. 有機電激發光材料的分類 24 2-2-1. 共軛高分子發光材料 25 2-2-2. 電洞注入/電洞傳輸材料(HIL/HTL) 26 2-2-3. 電子傳輸材料(Electron Transporting Material, ETM) 27 2-3. 有機發光二極體的效率 28 2-3-1. 影響OLED電流效率參數 28 2-3-2. 增進電子與電洞平衡的方法 30 2-4. 溼式製程 33 2-5. 研究動機 34 第三章 實驗內容 36 3-1. 實驗裝備與設備 36 3-2. 鑑定儀器 38 3-3. 物性及光電特性測量儀器 40 3-4. 實驗藥品及材料 48 3-5. 合成步驟 49 3-6. 單體及高分子3P5O和 BZID5O的合成 50 3-7. 元件設計及製作 54 3-7-1. 3P5O為電洞緩衝層 54 3-7-2. BZID5O為電子注入/傳輸層 57 第四章 結果與討論 58 4-1. 單體與高分子的合成與鑑定 59 4-1-1. 核磁共振光譜(NMR) 59 4-1-2. 元素分析儀(EA) 60 4-2. 高分子性質的測量與分析 63 4-2-1. 高分子分子量分析(GPC) 63 4-2-2. 高分子熱性質分析 63 4-3. 光學性質 67 4-3-1. UV-Vis吸收光譜和PL發光光譜 67 4-4. 電化學性質探討 70 4-4-1. 高分子3P5O與BZID5O之電化學性質探討 71 4-5. 高分子的成膜性質探討 73 4-6. 高分子發光二極體(PLED)元件特性 76 4-6-1. 3P5O與BZID5O之元件結構能階 76 4-6-2. 3P5O之元件特性 80 4-6-3. BZID5O之元件特性 83 4-7. 元件效率的探討 86 4-7-1. 3P5O之元件效率 86 4-7-2. BZID5O之元件效率 93 第五章 結論 95 參考文獻 97

    1. Pope, M.; Kallmann, H.; Magnante, P., J. Chem. Phys. 1963, 38, 2042.
    2. Tang, C. W.; Vanslyke, S. A., Appl. Phys. Lett. 1987, 51, 913.
    3. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Nature 1990, 347, 539.
    4. 段啟聖, 化工資訊雜誌與商情 民國94年8月, 第26期, 40.
    5. 郭昭輝, 塑膠資訊雜誌 民國91年10月.
    6. 呂淮安. 以水/醇可溶性之含氮冠醚基芴衍生物為電子注入層製備高效率高分子發光二極體. 碩士論文, 國立成功大學2012.
    7. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of Instrumental Analysis. 6th ed. 2007.
    8. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. 3rd ed. 2006.
    9. Pawlizak, S., Introduction of Fluorescence Microscopy.
    10. Kafafi, Z. H., Organic Electroluminescence. 2005.
    11. May, V.; Kühn, O., Charge and Energy Transfer Dynamics in Molecular Systems. 2nd, rev. and enl. ed 2004.
    12. Corporation, L. T., Fluorescence Resonance Energy Transfer (FRET) Note 1.2.
    13. Akcelrud, L., Prog Polym Sci 2003, 28, 875.
    14. Tran, V.; Schwartz, B. J., J. Phys. Chem. B 1999, 103, 5570.
    15. Guillet, J. E., Polymer Photophysics and Photochemistry.: New York: Canbridge University Press,, 1985.
    16. Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K., Chem. Rev. 2007, 107.
    17. 黃孝文; 陳雲, 化工資訊月刊 2001, 第15卷第3期, 8.
    18. 葉昆明; 陳雲, 科學發展 2005, 第385期, 58.
    19. 陳信宏; 陳雲, 中工高雄會刊 2006, 第3期, 72.
    20. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Nature 1998, 395, 151.
    21. Sugimoto, T.; Fukutani, K., Nature Physics 2011, 7, 307.
    22. 楊素華, 光訊雜誌 2002, 第98期, 29.
    23. Dhirhe, D.; Tiwari, S.; Tewari, H. S., Ionics 2007, 13, 319.
    24. 陳金鑫; 黃孝文, 有機電激發光材料與元件. 2005.
    25. Shirota, Y.; Kageyama, H., Chem Rev 2007, 107, 953.
    26. 方思文. 含Carbazole芴衍生物的合成、鑑定與電致發光元件電洞傳輸層之應用. 碩士論文, 國立成功大學2012.
    27. Segura, J. L., Acta. Polym. 1998, 49, 319.
    28. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C., Nature 1995, 376, 498.
    29. Yang, Y.; Heeger, A. J., Nature 1990, 374, 539.
    30. Mullekom, H. A. M. v.; Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W., Mater. Sci. Eng. 2001, 32, 1.
    31. Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, N. C.; Heeger, A. J., Nature 1992, 357, 477.
    32. Heeger, A. J., J. Phys. Chem. B 2001, 105, 8475.
    33. Kepler, R. G., Phys. Rev. 1960, 119, 1226.
    34. Martin, E. H.; Hirsch, J., Solid State Commun. 1969, 7, 783.
    35. Horowitz, G., Adv. Mater. 1998, 10, 365.
    36. Babel, A.; Jenekhe, S. A., J. Am. Chem. Soc. 2003, 125, 13656.
    37. Zhang, X.; Jenekhe, S. A., Macromolecules 2000, 33, 2069.
    38. Jenekhe, S. A.; Yi, S., Appl. Phys. Lett. 2000, 77, 2635.
    39. Malliaras, G. G.; Scott, J. C., ibib 1998, 83, 5399.
    40. Wohlgenannt, M.; Tandon, K.; Mazumdar, S.; Ramasesha, S.; Vardeny, Z. V., Nature 2001, 411, 617.
    41. Malliaras, G. G.; Scott, J. C., J Appl Phys 1998, 83, 5399.
    42. T. Wakimoto, T.; Fukuda, Y.; Nagayama, K.; Yokoi, A.; Nakada, H.; Tsuchida, M., Ieee T Electron Dev 1997, 22, 1245.
    43. Ganzorig, C.; Suga, K.; Fujihira, M., Mat Sci Eng B-Solid 2001, 85, 140.
    44. Ganzorig, C.; Fujihira, M., Appl Phys Lett 2004, 85, 4774.
    45. Stossel, M.; Staudigel, J.; Steuber, F.; Blassing, J.; Simmerer, J.; Winnacker, A., Appl Phys Lett 2000, 76, 115.
    46. Lee, T. H.; Huang, J. C. A.; Pakhomov, G. L.; Guo, T. F.; Wen, T. C.; Huang, Y. S.; Tsou, C. C.; Chung, C. T.; Lin, Y. C.; Hsu, Y. J., Adv Funct Mater 2008, 18, 3036.
    47. Lin, M. W.; Wen, T. C.; Hsu, Y. J.; Guo, T. F., J Mater Chem 2011, 21, 18840.
    48. VanSlyke, S. A.; Chen, C. H.; Tang, C. W., Appl Phys Lett 1996, 69, 2160.
    49. Forsythe, E. W.; Abkowitz, M. A.; Gao, Y., J. Phys. Chem. B 2000, 104, 3948.
    50. Ge, Z.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.; Kakimoto, M.-a., Adv Funct Mater 2008, 18, 584.
    51. Wu, C. S.; Wu, J. W.; Chen, Y., J. Mater. Chem. 2012, 22, 23877.
    52. Liao, C.-H.; Lee, M.-T.; Tsai, C.-H.; Chen, C. H., APPLIED PHYSICS LETTERS 2005, 86, 203507.
    53. Brown, C. T.; Kondakov, D., Journal of the SID 2004, 12, 323.
    54. Garcia, A.; II, R. C. B.; Zalar, P.; Hoven, C. V.; Brzezinski, J. Z.; Nguyen, T.-Q., J. Am. Chem. Soc. 2011, 133, 2492.
    55. Zhang, B.; Qin, C.; Ding, J.; Chen, L.; Xie, Z.; Cheng, Y.; Wang, L., Adv. Funct. Mater. 2010, 20, 2951.
    56. Lü, J.; Ma, Z.; Meng, B.; Sui, D.; Zhang, B.; Xie, Z.; Jing, X.; Wang, F.; Ding, J.; Wang, L., Optics Express 2011, 19, 1241.
    57. Huang, F.; Wu, H.; Cao, Y., Chem. Soc. Rev. 2010, 39, 2500.
    58. Lu, H. H.; Ma, Y. S.; Yang, N. J.; Lin, G. H.; Wu, Y. C.; Chen, S. A., J. Am. Chem. Soc. 2011, 133, 9634.
    59. Jeng, J. Y.; Lin, M. W.; Hsu, Y. J.; Wen, T. C.; Guo, T. F., Adv. Energy Mater. 2011, 1, 1192.
    60. Gebhardt, V.; Bacher, A.; Thelakkat, M.; Stalmach, U.; Meier, H.; Schmidt, H.-W.; Haarer, D., Advanced Materials 1999, 11, 119.
    61. Xia, C.; Advivcula, R. C., Macromolecules 2001, 34, 5854.
    62. Ibrahim, S.; Johan, M. R., Int. J. Electrochem. Sci 2012, 7, 2596.
    63. Alam, M. M.; Tonzola, C. J.; Jenekhe, S. A., Macromolecules 2003, 36, 6577.
    64. Pingree, L. S. C.; MacLeod, B. A.; Ginger, D. S., J. Phys. Chem. C 2008, 112, 7922.
    65. Lee, T. H.; Huang, J. C. A.; Guo, T. F.; Wen, T. C.; Huang, Y. S.; Tsou, C. C.; Chung, C. T.; Lin, Y. C.; Hsu, Y. J., Adv. Funct. Mater. 2008, 16, 3036.
    66. Scholer, L.; Seibel, K.; Panczyk, K.; Bohm, M., Microelectron. Eng. 2009, 86, 1502.
    67. 吳育星. 含二乙二醇乙醚基芳香1,2,4-三氮唑衍生物的合成、鑑定與光電性質. 國 立 成 功 大 學2013.

    無法下載圖示 校內:2019-10-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE