| 研究生: |
沈雅玲 Shen, Ya-Ling |
|---|---|
| 論文名稱: |
牛流行熱病毒外套膜醣蛋白G基因DNA疫苗之研究 Study of DNA Vaccine of Bovine Ephemeral Fever Viral Glycoprotein G Gene |
| 指導教授: |
陳世輝
Chen, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 牛流行熱病毒 、BEFV G基因DNA疫苗 、IL-2 DNA 、GM-CSF DNA 、複合型DNA疫苗 |
| 外文關鍵詞: | BEFV G gene DNA vaccine, combination DNA vaccine, bovine ephemeral fever virus, IL-2 DNA, GM-CSF DNA |
| 相關次數: | 點閱:133 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
牛流行熱病毒(bovine ephemeral fever virus, BEFV)為子彈型病毒科(rhabdoviridae)成員之一,會感染牛隻造成急性發熱,精神抑鬱(呻吟苦悶)、食慾不振、呼吸症狀、流產、產乳量下降等症狀,影響畜牧業經濟損失。BEF在台灣牛場的盛行率達56.8%,因而死亡或淘汰之牛隻為5%。現行疫苗為民國73年所分離之病毒株經福馬林不活化後,加入氫氧化鋁膠作為佐劑製成不活化疫苗,保護力仍不理想。DNA疫苗是近年來熱門且吸引人的新疫苗研究方向,可提升體液免疫反應及細胞免疫反應,搭配佐劑使用,可提升效力。
本研究擬以牛流行熱外套膜醣蛋白G基因為標的基因,結合細胞激素IL-2 (interleukin-2) DNA及GM-CSF (granulocyte/macrophage-colony stimulating factor) DNA之加強作用,研究此DNA疫苗的效力。在轉染細胞48小時後,抽取細胞RNA以RT-PCR進行RNA表現測定,結果顯示三種重組載體DNA皆有進行基因轉錄作用,轉錄之RNA定序結果與各載體攜帶之基因相符,亦顯示本研究所構築的三種重組載體皆可有效在哺乳類動物細胞中進行基因表現。另外,於BHK-21細胞預先轉染載體pcDNA3.1/BEFV-G,於12、24、36、48小時後,以劑量為100TCID50之 BEFV感染細胞,繼續培養48小時後,收集細胞培養液進行病毒效價測定(TCID50)。結果顯示,轉染載體後36小時內,病毒生長未受抑制,僅48小時後略下降,表示G載體於細胞內對於病毒後續感染未造成明顯干擾。
動物實驗方面,將BALB/c小鼠肌肉注射各重組載體DNA疫苗及佐劑,每間隔二週追加一劑,共施打三劑,並於每週進行採血,測定抗體反應及中和試驗,顯示同時免疫接種三種載體(pcDNA3.1/BEFV-G, pcDNA3.1/IL-2, pcDNA3.1/GM-CSF) 的組別,血清對於病毒之抗體效價(ELISA) 較為顯著,追加免疫後,血清效價上升更為顯著;其病毒中和性抗體產生亦有明顯反應。
Bovine Ephemeral fever Virus (BEFV), a member of the rhabdoviridae, can cause a sudden onset of fever, depression, lameness, respiration symptoms, increase in abortions and reduce milk production in cattle. It can cause significant economic impact in livestock industry. The disease incidence in Taiwan is up to 56.8% and case fatality is about 5%. The vaccine currently used was formaldehyde-inactivated virus of 1984 isolate in Taiwan, but its protection is not effective enough. DNA vaccine is a novel vaccine developing field. It can elicit persistent humoral- and cell-mediated immune responses. Recent studies have found that certain combinations of DNA vaccine, such as supplementation of cytokine DNA, could amplify immune response significantly.
Our research aimed to study the efficacy of the DNA vaccine pcDNA3.1/G using glycoprotein G gene of BEFV as a target gene combined with IL-2 and GM-CSF gene DNAs (pcDNA3.1/IL-2 and pcDNA3.1/GM-CSF, respectively) as adjuvants. First of all, we detected the individual target gene expression ability of these three recombinant vectors in BHK-21 cell culture model. After 48 hours’ transfection, we extracted total cellular RNA and detected equivalent gene expressions. The result showed that all of three recombinant vectors could express efficiently. Their sequencing results also matched perfectly with those recorded in NCBI nucleotide database. If BHK-21 cells were pre-transfected with pcDNA3.1/BEFV-G, then were infected with BEFV (100TCID50) after 12, 24, 36 and 48 hours transfections. Cells were then cultured for more 48 hours. Culture medium was harvested and pooled to detect viral titer (TCID50). The result showed that viral replication was not inhibited for 36 hours pre-transfection group, but inhibited slightly for 48 hours pr-transfection group. It showed that pcDNA3.1/BEFV-G could not cause interference in subsequent viral infection.
The female BALB/c mice were passively immunized by intramuscular inoculation with carrying vector, pcDNA3.1/BEFV-G or pcDNA3.1/BEFV-G combined with pcDNA3.1/IL-2 and/or pcDNA3.1/GM-CSF. Booster injection were performed twice at 2-weeks intervals. Blood samples for serology assay were obtained by orbital bleeding on every week. The results showed that mice immunized with combined DNA vectors (pcDNA3.1/BEFV-G, pcDNA3.1/IL-2 and pcDNA3.1/GM-CSF) had better antibody responses than those immunized with pcDNA3.1/BEFV-G alone. After final booster inoculation, serum antibody titers were further upgraded. And virus-neutralizing antibody titers were also dominantly found.
王俊秀及莊士德。(2002)。台灣獸醫發展史. 行政院農業委員會動植物防疫檢局 pp.223-225。
呂榮修、李永林、黃士則、蔡向榮、廖迂剛、林地發、曾俊憲、宋華聰。(1992)。1989年發生在台灣的牛流行熱學研究,台灣畜牧獸醫學會會報,60:51-56。
林朝舜。(1973)。牛流行性感冒,家畜衛生,台灣省政府農林暨中國村復小聯合委員會編印,pp. 54-61。
傅宗經。(1999)。牛流行熱病毒蛋白的生化研究,國立中興大學獸醫微生物學研究所論文,pp. 2-16。
Barouch D.H., Letvin N.L. and Seder R.A. (2004). The role of cytokine DNAs as vaccine adjuvants for optimizing cellular immune responses. Immunological Reviews 202:266-274.
Brink A.A., Oudejans J.J., Jiwa M., Walboomers J.M., Meijer C.J. and van den Brule A.J. (1997). Multiprimed cDNA synthesis followed by PCR is the most suitable method for Epstein-Barr virus transcript analysis in small lymphoma biopsies. Mol Cell Probes 11:39-47.
Cantlon J.D., Gordy P.W. and Bowen R.A. (2000). Immune responses in mice, cattle, horses to a DNA vaccine for cesicular stomatitis. Vaccine
18:2368-2374.
Chang D.Z., WHITNEYLOMAZOW, Stan R. and Perales M.A. (2004). Granulocyte-Macrophage Colony Stimulating Factor:An Adjuvant for Cancer Vaccines. Hematology 9:207–215
Chiu S.Y. (1986). The isolation of bovine ephemeral fever virus in Taiwan in 1984. Journal of the Chinese Society of Veterinary Scencei 12:275-288.
Chiu S.Y. and Lu Y.S. (1987). The epidemiology of bovine ephemeral fever in Taiwan in 1984. Journal of the Chinese Society of Veterinary Scencei 13:1-9.
Chow Y-H., Guang W-L., Chi W-K., Chu Y-D. and Tao M-H. (1997). Improvement of hepatitis B vius DNA vaccines by plasmids coexpressing hepatitis B surface antigen and interleukin-2. Journal of Virology 169-178.
Cybinski D.H., Davis S.S. and Zakrzewski H. (1992). Antigenic variation of the bovine ephemeral fever virus glycoprotein. Archives of virology 124:211-224.
Cybinski D.H., Walker P.J., Byrne K.A. and Zakrzewski H. (1990). Mapping of antigenic sites on the bovine ephemeral fever virus glycoprotein using monoclonal antibodies. Journal of General Virology 71:2065-72.
Donnelly J.J., Ulmer J.B. and Liu M.A. (1994). Immunization with DNA. J. Immunol Methods 176:145-152.
Fields B.N., Knipe D.M., Howley P.M. and Griffin D.E. (2001) Rhabdoviridae: the viruses and their replication. In: Fields virology, 4th ed. Lippincott Williams & Wilkins, pp1221-1244.
Garren H., Ruiz P.J., Watkins T.A., Fontoura P., Nguyen L.T., Estline E.R., Hirschberg D.L. and Steinman L. (2001). Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity 15:15-22.
Geissler M., Gesien A., Tokkushige K. and Wands J.R. (1997). Enhancement of cellular and humoral immune responses to hepatitis C virus core protein using DNA-based vaccines augmented with cytokine-expressing plasmids. Journal of immunology 158:1231-7.
Gregoriadis G., Bacon A., caparros-wanderley W. and McCormack B. (2002). A role for liposomes in genetic vaccination. Vaccine 20:B1-9.
Hazama M., Mayumi-Aono A., Asakawa N., Kuroda S., Hinuma S. and Fujisawa Y. (1993). Adjuvant-independent enhanced immune responses to recombinant herpes simplex virus type 1 glycoprotein D by fusion with biologically active interleukin-2. Vaccine 11:629-36.
Hertig C., Pye A.D., Hyatt A.D., Davis S.S., Mc William S.M., Heine H.G., Walker P.J. and Boyle D.B. (1995). Vaccinia virus-expressed bovine ephemeral fever virus G but not GNS glycoprotein induces neutralizing antibodies and protects against experimental infection. The Journal of general virology 77:631-640.
Holmes I.H. and Doherty R.L. (1970). Morphology and development of bovine ephemeral fever virus. Journal of Virology 5:91-96.
Hsieh Y.C., Chen S.H., Chou C.C., Ting L.J., Itakura C. and Wang F.I. (2005). Bovine ephemeral fever in Taiwan (2001–2002). The Journal of veterinary medical science 67: 411–416.
Hughes H.P., Campos M., Godson D.L., Van Drunen Little-Van Den Hurk S., McDougall L., Rapin N., Zamb T. and Babiuk L.A. (1991). Immunopotentiation of bovine herpes virus subunit vaccination by interleukin-2. Immunology 74:461-6.
Hughes H.P., Campos M., Van Drunen Little-Van Den Hurk S., Zamb T., Sordillo L.M., Godson D. and Babiuk L.A. (1992). Multiple administration with interleukin-2 potentiates antigen-specific responses to subunit vaccination with bovine herpesvirus-1 glycoprotein IV. Vaccine 10:226-30.
Inaba Y. (1973). Bovine ephemeral fever (three day sickness)- Stiff sickness, Bull. Intl. Epizootiol 79:627-673.
Inaba Y., Kurogi H., Sato K., Goto Y., Omori T. and Matumoto M. (1973). Formalin-inactivated, aluminum phosphate gel-adsorbed vaccine of bovine ephemeral fever virus. Archiv fur die Gesamte Virusforschung 42:42-53.
Inaba Y., Kurogi H., Takahashi A., Sato K. and Matumoto M. (1974). Vaccination of cattle against bovine ephemeral fever with live attenuated virus followed by killed virus. Archiv fur die Gesamte Virusforschung 44:121-132.
Jakob T., Walker P.S., Krieg A.M., Udey M.C. and Vogel J.C. (1998). Activation of cutaneousdendritic cells by CpG-containing oligodeoxynucleotides: a role fordendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. Journal of immunology 161:3042–3049.
Jones T., Stern A. and Lin R. (1994). Potential role of granulocyte-macrophage colony-stimulating factor as vaccine adjuvant. European journal of clinical microbiology & infectious diseases 13: 47–53.
Kongsuwan K., Cybinski D.H., Cooper J. and Walker P.J. (1998). Location of neutralizing epitopes on the G protein of bovine ephemeral fever rhabdovirus. The Journal of general virology 79:2573-2581.
Liao, Y.K., Inaba Y., Li N.J., Chain C.Y., Lee S.L. and Liou P.P. (1998). Epidemiology of bovine ephemeral fever virus infection in Taiwan. Microbiological Research 153:289-295.
Lima J., Jenkins C., Guerrero A., Triozzi P.L., Shaw D.R. and Strong R.V. (2005). A DNA vaccine encoding genetic fusions of carcinoembryonic antigen (CEA) and granulocyte/macrophage colony-stimulating factor (GM-CSF). Vaccine 23:1273-1283.
Mackerras I.M., Mackrras J. and Burnet F.M. (1940). Experimental studies of ephemeral fever in Australian cattle. Council for Scientific and Industrial Research Melbourne Bulletin No.136.
Maecker H.T., Umetsu D.T., Dekruy R.H. and Levy S. (1997). DNA vaccination with cytokine fusion constructs biases the immune response to ovalbumin. Vaccine 15:1687-1696.
Mc William S.M., Kongsuwan K., Cowley J.A., Byrne K.A. and Walker P.J. (1997). Genome organization and transcription strategy in the complex GNS-L intergenic region of bovine ephemeral fever rhabdovirus. The Journal of general virology 78:1309-1317.
Nobiron I., Thompson I., Brownlie J. and Collins M.E. (2003). DNA vaccination against bovine viral diarrhoea virus induces humoral and cellular immune responses in cattle with evidence for protection against viral challenge. Vaccine 21:2082-2092.
Nobiron I., Thompson I., Brownlie J. and Collins M.E. (2001). Cytokine
adjuvancy of BVDV DNA vaccine enhances both humoral and cellular immune responses in mice. Vaccine 19:4226-4235.
Nobiron I., Thompson I., Brownlie J. and Collins M.E. (2000). Co-administration of IL-2 enhances antigen-specific immune responses following vaccination with DNA encoding the glycoprotein E2 of bovine viral diarrhoea virus. Veterinary Microbiology 76:129-42.
O’Hagan D.T., MacKichan L.M. and Singh M. (2001). Recent developments in adjuvants for vaccines against infectious diseases. Biomolecular Engineering 18:69–85.
Okada E., Sasaki S., Ishii N., Aoki I., Yasuda T., Nishioda K., Fukushima
J., Miyazaki J., Wahren B. and Okuda K. (1997). Intranasal immunization
of a DNA vaccine with IL-12- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens. Journal of immunology 159:3638-3647.
Raz E., Watanabe A., Baird S.M., Eisenberg R.A., Parr T.B., Lotz M., Kipps T.J. and Carson D.A. (1993). Systemic immunological effects of cytokine genes injected into skeletal muscle. Proc Natl Acad Sci U S A 90:4523-7.
Sasaki S., Takeshita F., Xin K.Q., Ishii N. and Okuda K. (2003). Adjuvant formulations and delivery systems for DNA vaccines. Methods 31:243-254.
Sato K., Inaba Y., Kurogi H., Omori T. and Yamashino T. (1975). Rolling round bottle culture of HmLu-1 cells and the production of bovine ephemeral fever virus. National Institute of Animal Health quarterly 15:109-115.
Sin J.I., Kim J.J., Boyer J.D., Ciccarelli R.B., Higgins T.J. and Weiner D.B. (1999). In vivo modulation of vaccine-induced immune responses toward a Th1 phenotype increases potency and vaccine effectiveness in a herpes simplex virus type 2 mouse model. Journal of Virology 73:501-9.
St George T.D., Standfast H.A., Christie D.G., Knott S.G. and Morgan I.R. (1977). The epizootiology of bovine ephemeral fever in Australia and Papua New Guinea. Australian veterinary journal 53:17-28.
Sun X., Hodge L.M., Jones H.P., Tabor L., Simecka J.W. (2002). Co-expression of granulocyte-macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine 20:1466-1474.
Taglietti M. (1995). Vaccine adjuvancy: a new potential area of development forGM-CSF. Advances in experimental medicine and biology 378:565–569.
Tao M.H. and Levy R. (1993). Idiotype/granulocyte-macrophage colony-stimulating factor fusion protein as a vaccine for B-cell lymphoma. Nature 362:755-8.
Theodoridis A., Boshoff S.E.T. and Botha M.J. (1973). Syudies on the development of a vaccine against bovine ephemeral fever. The Onderstepoort journal of veterinary research 40:77-82.
Theodoridis A., Nevill E.M., Els H.J. and Boshoff S.T. (1979). Viruses isolated from Culicoides midges in South Africa during unsuccessful attempts to isolate bovine ephemeral fever virus. The Onderstepoort journal of veterinary research 46:191-8.
Tzpori S. and Spradrow P.B. (1978). A cell culture vaccine against bovine ephemeral fever. Aust. Vet. J. 54:323-328.
Tzipori S. and Spradbrow P.B. (1974). Development and behaviour of a strain of bovine ephemeral fever virus with unusual host range. Journal of comparative pathology 84:1-8.
Tzipori S. and Spradbrow P.B. (1973). Studies on vaccines against bovine ephemeral fever. Australian veterinary journal 49:183-187.
Uren M.F., Walker P.J., Zakrzewski H., St George T.D. and Byrne K.A. (1994). Effective vaccination of cattle using the virion G protein of bovine ephemeral fever virus as an antigen. Vaccine 12:845-850.
Vanselow B.A., Abetz I. and Trenfield K. (1985). A bovine ephemeral fever vaccine incorporating adjuvant Quil A:a comparative study using adjuvants Quil A, aluminium hydroxide gel and dextran sulphate. The Veterinary record 117:37-43
Vanselow B.A., Walthall J.C. and Abetz I. (1995). Field trials of ephemeral fever vaccines. Veterinary microbiology 46:117-130.
Walker P.J., Byrne K.A., Cybinski D.H., Doolan D.L. and Wang Y.H. (1991). Proteins of bovine ephemeral fever virus. The Journal of general virology 72:67-74.
Walker P.J., Byrne K.A., Riding G.A., Cowley J.A., Wang Y. and Mc William S. (1992). The genome of bovine ephemeral fever rhabdovirus contains two related glycoprotein genes. Virololy 191:49-61.
Walker P.J. and Konsuwan K. (1999). Deduced structural model for animal
rhabdovirus glycoprotein. The Journal of general virology 80:1211-1220.
Walker P.J., Wang Y., Cowley J.A., Mc William S.M. and Prehaud C.J. (1994). Structural and antigenic analysis of the nucleoprotein of bovine ephemeral fever rhabdovirus. The Journal of general virology 75:1889-1899.
Weiss W.R., Ishii K.J., Hedstrom R.C., Sedegah M., Ichino M., Barnhart K., Klinman D.M. and Hoffman S.L. (1998). A plasmid encoding murine granulocyte-macrophage colony-stimulating factor increases protection conferred by a malaria DNA vaccine. Journal of Immunology 151:2325-32.
Wolff J.A., Malone R.W., Williams P., Acsadi G., Jani A. and Felgner P.L. (1990). Direct gene transfer into mouse and muscle in vivo. Science 23:
1465-8.
Xiang Z. and Ertl H.C. (1995). Manipulation of the immune response to a
plasmid-encoded viral antigen by coinoculation with plasmids expressing
cytokines. Immunity 2:129-135.