簡易檢索 / 詳目顯示

研究生: 姚俊嘉
Yao, Jin-Jia
論文名稱: 轉折裂縫之應力強度因子計算
Stress intensity factors of turning cracks
指導教授: 胡潛濱
Hwu, Chyan-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 45
中文關鍵詞: 轉折裂縫應力強度因子邊界元素法H積分
外文關鍵詞: turning crack, kink crack, H-integral
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 應力強度因子是探討裂縫問題之重要參數,其定義式與裂縫尖端周圍的應力息息相關,不過不幸的是在裂縫尖端的附近會有奇異性,因此往往都需要將裂縫表面切割成相當細、相當多的元素才能夠準確的求出應力強度因子,再加上當裂縫延展後有所轉折時,想要求出正確的應力強度因子又更為困難了,因此本研究為了能夠計算像是轉折裂縫這種複雜的問題,將採取與路徑無關的H積分來做應力強度因子的計算,使計算應力強度因子中所需要使用到的高斯點物理量遠離裂縫尖端,避免奇異性問題的產生。
    由實驗可以得知,當H積分的路徑越遠離裂縫尖端,則裂縫表面所需要切割的元素數將會減少,因為越不會受到裂縫影響,因此為了兼顧效率與速率,本研究除了原本舊有的任意圓形積分路徑,還推導出任意多線段的H積分路徑之輔助解,並且與內插法做結合,更利用已知的邊界解內插計算應力強度因子當中所需要的高斯點位移與應力,如此不但能夠遠離裂縫尖端避免奇異性,更是能夠利用邊界解沿著邊界做H積分的計算來求出應力強度因子。

    The stress intensity factor is an important parameter to discuss the crack problem, and its definition is depended on the stress around the crack tip. Unfortunately, there will be singularity near the crack tip, so it is often necessary to build many elements on the crack surface. Thus, in order to calculate the stress intensity factors of turning cracks. The path independent H-integral will be used to calculate the stress intensity factor. Therefore, the integral path can be far away from the crack tip to avoid the problem of singularity.
    Depend on the experiment result, when the path of H-integration crosses the crack tip, the requirement of element number on the crack surface will be reduced. Thus, in order to balance efficiency and accuracy, this research expect to derived the traction auxiliary solution of the arbitrary piecewise line H-integral path. Simultaneously, combined with the interpolation method, and calculate the displacement and stress on the Gaussian point which required to calculate the stress intensity factor. In this way, not only can avoid the singularity on the crack tip, but also the stress intensity factor can be calculated by the H integral around the boundary.

    摘要 I ABSTRACT II 致謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 符號說明 XIV 第一章 緒論 1 1.1文獻回顧 1 1.2研究目的 9 1.3本文架構 9 第二章 應力強度因子 11 第三章 H積分 14 3.1應力強度因子之H積分計算 14 3.2任意圓形積分路徑 15 3.3任意多線段積分路徑 16 第四章 近奇異點之正規化計算 19 4.1邊界元素之奇異積分 19 4.2靠近邊界點之內部點 20 第五章 數值範例與結果 24 5.1單一水平裂縫 25 5.2單一斜裂縫 28 5.3轉折裂縫 31 5.4計算效率與準確率之比較 36 5.5各種不同路徑之計算結果 41 第六章 結論 43 參考資料 44

    [1] C. Hwu, M. Aggarwal, and J. Lee, "FRACTURE TOUGHNESS OF GRAPHENE SHEET ESTIMATED BY COUPLING OF BOUNDARY ELEMENT AND FINITE ELEMENT."
    [2] A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials," Nature materials, vol. 10, no. 8, pp. 569-581, 2011.
    [3] P. Zhang et al., "Fracture toughness of graphene," Nature communications, vol. 5, p. 3782, 2014.
    [4] M. Xu, A. Tabarraei, J. T. Paci, J. Oswald, and T. Belytschko, "A coupled quantum/continuum mechanics study of graphene fracture," International journal of fracture, vol. 173, no. 2, pp. 163-173, 2012.
    [5] R. Khare et al., "Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets," Physical Review B, vol. 75, no. 7, p. 075412, 2007.
    [6] B. Zhang, L. Mei, and H. Xiao, "Nanofracture in graphene under complex mechanical stresses," Applied Physics Letters, vol. 101, no. 12, p. 121915, 2012.
    [7] Y.-K. Yeh and C. Hwu, "A modified molecular-continuum model for estimating the strength and fracture toughness of graphene and carbon nanotube," Engineering Fracture Mechanics, vol. 176, pp. 326-342, 2017.
    [8] S. Bechtle, T. Fett, G. Rizzi, S. Habelitz, and G. A. Schneider, "Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel," Journal of the mechanical behavior of biomedical materials, vol. 3, no. 4, pp. 303-312, 2010.
    [9] Y. Murakami and L. Keer, "Stress intensity factors handbook, vol. 3," 1993.
    [10] M. Gupta, R. Alderliesten, and R. Benedictus, "A review of T-stress and its effects in fracture mechanics," Engineering Fracture Mechanics, vol. 134, pp. 218-241, 2015.
    [11] J. R. Rice, "A path independent integral and the approximate analysis of strain concentration by notches and cracks," 1968.
    [12] N. Choi and Y.-Y. Earmme, "Evaluation of stress intensity factors in circular arc-shaped interfacial crack using L integral," Mechanics of materials, vol. 14, no. 2, pp. 141-153, 1992.
    [13] S. Im and K.-S. Kim, "An application of two-state M-integral for computing the intensity of the singular near-tip field for a generic wedge," Journal of the Mechanics and Physics of Solids, vol. 48, no. 1, pp. 129-151, 2000.
    [14] C. Hwu and T. Kuo, "A unified definition for stress intensity factors of interface corners and cracks," International Journal of Solids and Structures, vol. 44, no. 18-19, pp. 6340-6359, 2007.
    [15] C. Hwu, "Matrix form near tip solutions of interface corners," International journal of fracture, vol. 176, no. 1, pp. 1-16, 2012.
    [16] A. Omeltchenko, J. Yu, R. K. Kalia, and P. Vashishta, "Crack front propagation and fracture in a graphite sheet: a molecular-dynamics study on parallel computers," Physical review letters, vol. 78, no. 11, p. 2148, 1997.
    [17] C. Hwu, Anisotropic elastic plates. Springer Science & Business Media, 2010.
    [18] C. Hwu and H. Huang, "Investigation of the stress intensity factors for interface corners," Engineering Fracture Mechanics, vol. 93, pp. 204-224, 2012.
    [19] C. Hwu, H.-B. Ko, T.-H. Lo, and C.-W. Hsu, "Evaluation of singular integrals for anisotropic elastic boundary element analysis," Applied Mathematical Modelling, vol. 81, pp. 128-143, 2020.
    [20] H. Tada, P. C. Paris, G. R. Irwin, and H. Tada, The stress analysis of cracks handbook. ASME press New York, 2000.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE