| 研究生: |
張雨鵑 Chang, Yu-Chuan |
|---|---|
| 論文名稱: |
單次高強度間歇運動與中強度連續有氧運動對於中老年人工作記憶之認知神經表現效果 The Effects of Acute High-Intensity Interval Exercise and Moderate-Intensity Continuous Exercise on Neurocognitive Performance of Working Memory in Middle-Aged and Elderly Adults |
| 指導教授: |
蔡佳良
Tsai, Chia-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 體育健康與休閒研究所 Institute of Physical Education, Health & Leisure Studies |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 單次運動 、工作記憶 、事件相關電位 、高強度間歇運動 、有氧運動 |
| 外文關鍵詞: | acute exercise, working memory, high-intensity interval exercise, event-related potentials(ERPs), aerobic exercise |
| 相關次數: | 點閱:211 下載:46 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:本研究目的使用工作記憶S1-S2 paradigm認知作業來比較單次高強度間歇運動與中強度連續有氧運動對於中老年人的認知行為與認知電生理表現差異。
方法:研究參與者為18名56~67歲的中老年人,分別在不同天(間隔7天)進行單次高強度間歇運動、中強度連續有氧運動與安靜休息,兩種運動介入將騎乘30分鐘的斜背式腳踏車,三種介入模式前後均執行S1-S2 paradigm認知作業,並同時收錄行為與腦波數據。統計分析以重複量數變異數分析行為表現(反應時間、準確率)與事件相關電位(P3成分波潛時和振幅),顯著水準訂為p < .05。結果:本研究發現準確率僅在中強度連續有氧運動介入後顯著改善;反應時間在高強度間歇運動與中強度連續有氧運動後皆顯著的變快;P3振幅也在高強度間歇運動與中強度連續有氧運動後顯著的增加;P3潛時則無任何顯著改變。結論:雖然僅有中強度連續有氧運動能提升中老年人工作記憶表現的正確率,在高強度間歇運動與中強度連續有氧運動介入後,均能促進工作記憶在檢索階段刺激評估的速度,以及引起更多的注意力資源徵召。因此,未來中老年人可採用這兩種運動模式來預防工作記憶力退化的問題。
關鍵詞:單次運動、工作記憶、事件相關電位、高強度間歇運動、有氧運動
Purpose: The aim of the present study was to investigate the effects of acute high-intensity interval exercise (HIIE) versus moderate-intensity continuous exercise (MICE) on the behavioral and cognitive electrophysiological performance in the middle-aged and elder adults when performing the S1-S2 paradigm cognitive task of working memory. Methods: Eighteen participants aged 56-67 years (60.8 ± 3.4) performed a cognitive task before and after (1) HIIE, (2) MICE, and (3) resting control sessions. A 30-min stationary cycling was selected in the HIIE and MICE sessions as an aerobic exercise intervention mode. Immediately before and after each session, the participants were asked to perform a working memory test with a S1-S2 paradigm to assess the acute exercise effects on working memory. The behavior and event-related potentials (ERPs) indices were recorded simultaneously. Result: Our results revealed that, although accuracy rates were significantly increased only via the MICE intervention mode, decreased reaction times and larger ERP P3 amplitudes were obesrved after a signle bout of HIIE and MICE interventions. The P3 latencies were not significantly changed after the three interventions. Conclusions: A single bout of HIIE and MICE interventions can improve stimulus evaluation speed in the retrieval phase of working memory and allocating more attention resource. The two aerobic exercise modes could prevent age-related declines in working memory.
Keywords : acute exercise, working memory, high-intensity interval exercise, event-related potentials(ERPs), aerobic exercise
一、 中文部分
內政部統計處 (2021)。臺灣110年老年人口比例. 引自: https://www.moi.gov.tw/cp.aspx?n=602&ChartID=S0401
呂昌明、林旭龍、黃奕清、李明憲和王淑芳(2001)。身體活動自我報告量表之效度及信度的研究。衛生教育學報,14,33-48
曹語倢、陳喬男和廖翊宏(2020)。高強度間歇運動對大腦血流及認知功能急性反應之探討。中華體育季刊,34(2),121-130.
盧孟良、車先蕙、張尚文、沈武典 (2002)。中文版貝克憂鬱量表第二版之信度和效度。Taiwanese Journal of Psychiatry,16,301-310。
二、 西文部分
Almela, M., van der Meij, L., Hidalgo, V., Villada, C., & Salvador, A. (2012). The cortisol awakening response and memory performance in older men and women. Psychoneuroendocrinology, 37(12), 1929-1940.
Alves, C. R., Gualano, B., Takao, P. P., Avakian, P., Fernandes, R. M., Morine, D., & Takito, M. Y. (2012). Effects of acute physical exercise on executive functions: a comparison between aerobic and strength exercise. Journal of Sport and Exercise Psychology, 34(4), 539-549.
Alves, C. R., Tessaro, V. H., Teixeira, L. A., Murakava, K., Roschel, H., Gualano, B., & Takito, M. Y. (2014). Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Perceptual and Motor Skills, 118(1), 63-72.
Audiffren, M., Tomporowski, P. D., & Zagrodnik, J. (2008). Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task. Acta Psychologica,129, 410-419.
Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1-29.
Beck, A. T., Steer, R. A., Ball, R., & Ranieri, W. (1996). Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. Journal of Personality Assessment, 67(3), 588-597.
Blair, C., Granger, D., & Peters Razza, R. (2005). Cortisol reactivity is positively related to executive function in preschool children attending head start. Child Development, 76(3), 554-567.
Budde, H., Brunelli, A., Machado, S., Velasques, B., Ribeiro, P., Arias-Carrión, O., & Voelcker-Rehage, C. (2012). Intermittent maximal exercise improves attentional performance only in physically active students. Archives of Medical Research, 43(2), 125-131.
Budson, A. E., & Price, B. H. (2005). Memory dysfunction. New England Journal of Medicine, 352(7), 692-699.
Cabeza, R. (2001).Cognitive neuroscience of aging: contributions of functional neuroimaging. Scandinavian Journal of Psychology, 42(3), 277-286.
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Research, 1453, 87-101.
Chang, Y. K., Chu, C. H., Wang, C. C., Song, T. F., & Wei, G. X. (2015). Effect of acute exercise and cardiovascular fitness on cognitive function: An event‐related cortical desynchronization study. Psychophysiology, 52(3), 342-351.
Chang, Y. K., Huang, C. J., Chen, K. F., & Hung, T. M. (2013). Physical activity and working memory in healthy older adults: an ERP study.Psychophysiology,50(11), 1174-1182.
Churchill, J. D., Galvez, R., Colcombe, S., Swain, R. A., Kramer, A. F., & Greenough, W. T. (2002). Exercise, experience and the aging brain. Neurobiology of Aging, 23(5), 941-955.
Coelho, F. G., Vital, T. M., Stein, A. M., Arantes, F. J., Rueda, A. V., Camarini, R., Teodorov, E., & Santos-Galduróz, R. F. (2014). Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease. Journal of Alzheimer's Disease, 39(2), 401-408.
Coetsee, C., & Terblanche, E. (2017). Cerebral oxygenation during cortical activation: The differential influence of three exercise training modalities. A randomized controlled trial. European Journal of Applied Physiology, 117(8), 1617-1627.
Coles, M. G.(1989). Modern mind‐brain reading: psychophysiology, physiology, and cognition. Psychophysiology, 26(3), 251-269.
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168.
Dietrich, A., & Audiffren, M. (2011). The reticular-activating hypofrontality (RAH) model of acute exercise. Neuroscience & Biobehavioral Reviews, 35(6), 1305-1325.
Doucet, C., & Stelmack, R. M. (1999). The effect of response execution on P3 latency, reaction time, and movement time. Psychophysiology, 36(3), 351-363.
Fiorelli, C. M., Ciolac, E. G., Simieli, L., Silva, F. A., Fernandes, B., Christofoletti, G., & Barbieri, F. A. (2019). Differential acute effect of high-intensity interval or continuous moderate exercise on cognition in individuals with Parkinson's disease. Journal of Physical Activity and Health, 16(2), 157-164.
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189-198.
Gajewski, P. D., & Falkenstein, M. (2018). ERP and behavioral effects of physical and cognitive training on working memory in aging: a randomized controlled study. Neural Plasticty,2018 ,1-12.
Gomez-Pinilla, F., Vaynman, S., & Ying, Z. (2008). Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition.European Journal of Neuroscience, 28(11), 2278-2287.
Greeff, J. W., Bosker, R. J., Oosterlaan, J., Visscher, C., & Hartman, E. (2018). Effects of physical activity on executive functions, attention and academic performance in preadolescent children: a meta-analysis. Journal of Science and Medicine in Sport, 21(5), 501-507.
Hillman, C. H., Belopolsky, A. V., Snook, E. M., Kramer, A. F., & McAuley, E. (2004). Physical activity and executive control: implications for increased cognitive health during older adulthood. Research Quarterly for Exercise and Sport, 75(2), 176-185.
Holtzer, R., Shuman, M., Mahoney, J. R., Lipton, R., & Verghese, J. (2011). Cognitive fatigue defined in the context of attention networks. Aging, Neuropsychology, and Cognition, 18(1), 108-128.
Kamijo, K., & Abe, R. (2019). Aftereffects of cognitively demanding acute aerobic exercise on working memory.Medicine & Science in Sports & Exercise, 51(1), 153-159.
Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults.Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 64(3), 356-363.
Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology, 65(2), 114-121.
Kao, S.C., Drollette, E. S., Ritondale, J. P., Khan, N., & Hillman, C. H. (2018). The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychology of Sport and Exercise, 38, 90-99.
Kao, S.C., Wang, C.H., Kamijo, K., Khan, N., & Hillman, C. (2020). Acute effects of highly intense interval and moderate continuous exercise on the modulation of neural oscillation during working memory.International journal of psychophysiology : official journal of the International Organization of Psychophysiology,160, 10-17.
Kao, S.C., Wang, C.H., & Hillman, C. H. (2020). Acute effects of aerobic exercise on response variability and neuroelectric indices during a serial n-back task. Brain and Cognition, 138, 105508.
Kessler, Y., & Oberauer, K. (2015). Forward scanning in verbal working memory updating. Psychonomic Bulletin & Review, 22(6), 1770-1776.
Kline, C., Porcari, J. P., Hintermeister, R., Freedson, P. S., Ward, A., McCarron, R. F., & Rippe, J. (1987). Estimation of from a one-mile track walk, gender, age and body weight. Medicine & Science in Sports & Exercise, 19, 253-259.
Kujach, S., Olek, R. A., Byun, K., Suwabe, K., Sitek, E. J., Ziemann, E., Laskowski, R., & Soya, H. (2020). Acute sprint interval exercise increases both cognitive functions and peripheral neurotrophic factors in humans: the possible involvement of lactate. Frontiers in Neuroscience, 13, 1455.
Leahy, A. A., Mavilidi, M. F., Smith, J. J., Hillman, C. H., Eather, N., Barker, D., & Lubans, D. R. (2020). Review of high-intensity interval training for cognitive and mental health in youth. Medicine and Science in Sports and Exercise, 52(10), 2224–2234.
Lubans, D., Richards, J., Hillman, C., Faulkner, G., Beauchamp, M., Nilsson, M., Kelly, P., Smith, J., Raine, L., & Biddle, S. (2016). Physical activity for cognitive and mental health in youth: A systematic review of mechanisms. Pediatrics, 138(3), e20161642.
Lucas, S. J., Cotter, J. D., Brassard, P., & Bailey, D. M. (2015). High-intensity interval exercise and cerebrovascular health: Curiosity, cause, and consequence. Journal of Cerebral Blood Flow & Metabolism, 35(6), 902-911.
Lupien, S. J., & McEwen, B. S. (1997). The acute effects of corticosteroids on cognition: integration of animal and human model studies. Brain Research Reviews, 24(1), 1-27.
Magnié, M. N., Bermon, S., Martin, F., Madany‐Lounis, M., Suisse, G., Muhammad, W., & Dolisi, C. (2000). P300, N400, aerobic fitness, and maximal aerobic exercise. Psychophysiology, 37(3), 369-377.
McCarthy, G., & Donchin, E. (1981). A metric for thought: a comparison of P300 latency and reaction time. Science, 211(4477), 77-80.
McMorris, T. (2009). Exercise and cognitive function: a neuroendocrinological explanation. Exercise and Cognitive Function, 41-68.
McMorris, T., & Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation. Brain and Cognition, 80(3), 338-351.
Meeusen, R., & De Meirleir, K. (1995). Exercise and brain neurotransmission. Sports Medicine, 20(3), 160-188.
Missonnier, P., Gold, G., Leonards, U., Costa-Fazio, L., Michel, J. P., Ibanez, V., & Giannakopoulos, P. (2004). Aging and working memory: early deficits in EEG activation of posterior cortical areas. Journal of Neural Transmission, 111(9), 1141-1154.
Morrison, C., Kamal, F., & Taler, V. (2019). The influence of working memory performance on event-related potentials in young and older adults. Cognitive Neuroscience, 10(3), 117-128.
Murer, M., Yan, Q., & Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Progress in Neurobiology, 63(1), 71-124.
Nichols, E. A., Kao, Y. C., Verfaellie, M., & Gabrieli, J. D. (2006). Working memory and long-term memory for faces: Evidence from fMRI and global amnesia for involvement of the medial temporal lobes. Hippocampus, 16(7), 604-616.
Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2018). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Journal of Brain Science, 52(3), 154-160.
Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2018). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. British Journal of Sports Medicine, 52(3), 154-160.
O'Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283-328.
Pagliari, R., & Peyrin, L. (1995). Norepinephrine release in the rat frontal cortex under treadmill exercise: a study with microdialysis. Journal of Applied Physiology, 78(6), 2121-2130.
Pedroso, R. V., Fraga, F. J., Ayán, C., Cancela Carral, J. M., Scarpari, L., & Santos‐Galduróz, R. F. (2017). Effects of physical activity on the P 300 component in elderly people: a systematic review. Psychogeriatrics, 17(6), 479-487.
Peiffer, R., Darby, L. A., Fullenkamp, A., & Morgan, A. L. (2015). Effects of acute aerobic exercise on executive function in older women. Journal of Sports Science & Medicine, 14(3), 574.
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.
Pontifex, M. B., Hillman, C. H., Fernhall, B., Thompson, K. M., & Valentini, T. A. (2009). The effect of acute aerobic and resistance exercise on working memory. Medicine and Science in Sports and Exercise, 41(4), 927-934.
Quesada, A. A., Wiemers, U. S., Schoofs, D., & Wolf, O. T. (2012). Psychosocial stress exposure impairs memory retrieval in children. Psychoneuroendocrinology, 37(1), 125-136.
Rey-Mermet, A., Gade, M., & Oberauer, K. (2018). Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(4), 501.
Sallis, J. F., Nader, P. R., Broyles, S. L., Berry, C. C., Elder, J. P., McKenzie, T. L., & Nelson, J. A. (1993). Correlates of physical activity at home in Mexican-American and Anglo-American preschool children. Health Psychology, 12(5), 390-398.
Skriver, K., Roig, M., Lundbye-Jensen, J., Pingel, J., Helge, J. W., Kiens, B., & Nielsen, J. B. (2014). Acute exercise improves motor memory: exploring potential biomarkers. Neurobiology of Learning and Memory, 116, 46-58.
Stipacek, A., Grabner, R., Neuper, C., Fink, A., & Neubauer, A. (2003). Sensitivity of human EEG alpha band desynchronization to different working memory components and increasing levels of memory load. Neuroscience Letters, 353(3), 193-196.
Tian, S., Mou, H., & Qiu, F. (2021). Sustained effects of high-intensity interval exercise and moderate-intensity continuous exercise on inhibitory control.International Journal of Environmental Research and Public Health,18(5), 2687.
Thompson, W. R. (2019). Worldwide survey of fitness trends for 2020. ACSM's Health & Fitness Journal, 23(6), 10-18.
Tsai, C. L., Chen, F. C., Pan, C. Y., Wang, C. H., Huang, T. H., & Chen, T. C. (2014). Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology, 41, 121-131.
Tsai, C. L., Pan, C. Y., Chen, F. C., Wang, C. H., & Chou, F. Y. (2016). Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness. Experimental physiology,101(7), 836–850.
Tops, M., van der Pompe, G., Wijers, A. A., Den Boer, J. A., Meijman, T. F., & Korf, J. (2004). Free recall of pleasant words from recency positions is especially sensitive to acute administration of cortisol.Psychoneuroendocrinology,29(3), 327–338
Vaquero, E., Cardoso, M., Vazque, M., & Gomez, C. (2004). Gender differences in event-related potentials during visual-spatial attention. International Journal of Neuroscience, 114(4), 541-557.
Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Kim, J. S., Alves, H., Szabo, A., Phillips, S. M., Wójcicki, T. R., Mailey, E. L., Olson, E. A., Gothe, N., Vieira-Potter, V. J., Martin, S. A., Pence, B. D., Cook, M. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2013). Neurobiological markers of exercise-related brain plasticity in older adults.Brain, Behavior, and Immunity,28, 90–99.
Wang, C. C., Shih, C. H., Pesce, C., Song, T. F., Hung, T. M., & Chang, Y. K. (2015). Failure to identify an acute exercise effect on executive function assessed by the Wisconsin Card Sorting Test. Journal of Sport and Health Science, 4(1), 64-72.
Wang, L., Kuroiwa, Y., & Kamitani, T. (1999). Visual event-related potential changes at two different tasks in nondemented Parkinson’s disease. Journal of the Neurological Sciences, 164(2), 139-147.
Weng, T. B., Pierce, G. L., Darling, W. G., & Voss, M. W. (2015). Differential effects of acute exercise on distinct aspects of executive function.Medicine & Science in Sports & Exercise, 47(7), 1460-1469.
Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., & Kempermann, G. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer's disease. Biological Psychiatry, 60(12), 1314-1323.