簡易檢索 / 詳目顯示

研究生: 吳兆瑋
Wu, Chao-Wei
論文名稱: 利用乳酸與乙酸共基質醱酵產氫之研究
Fermentative Biohydrogen Production from Lactate and Acetate
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 104
中文關鍵詞: 厭氧生物產氫乳酸乙酸Clostridium tyrobutyricum
外文關鍵詞: biohydrogen production, lactate, acetate, Clostridium tyrobutyricum
相關次數: 點閱:151下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化石燃料的大量使用造成全球暖化與各種能源問題,因此尋找經濟、環保與可永續利用的替代能源日趨重要。多種再生能源中,厭氧生物產氫可以針對各種廢棄有機物進行能源再生與資源再利用,為一同時具有經濟與環保價值的再生能源,極具發展潛力。
    先前之研究以生質酒精廢液做為基質進行生化產氫試驗,發現試驗之菌群具有兩階段式降解產氫之現象:麥芽糖降解生成乳酸、乙酸及其他有機酸,而氫氣則伴隨著乳酸與乙酸濃度的下降生成。許多文獻中已提及乳酸與乙酸降解生成氫氣的代謝反應,然而尚未有以乳酸乙酸作為基質之氫氣研究被提出,此產氫機制也尚未透過實驗證實,僅有部分研究以批次實驗觀察產氫現象,未有以連續流生物反應器進行完整之產氫效能評估。
    因此,此研究設計連續流生物反應器,以乳酸與乙酸優勢化產氫菌群進行產氫試驗並評估其產氫效能。五個反應槽試驗操作在pH = 6,溫度為35°C ,以基質濃度15000 mg/L乳酸與45000 mg/L乙酸進行HRT = 23、18、12 hrs,基質濃度為30000 mg/L乳酸與9000 mg/L乙酸進行HRT=18、12 hrs產氫試驗。各試程主要的代謝產物為丁酸,提供乳酸與乙酸濃度分別為30000/9000 mg/L,操作在HRT = 18hrs時,有最大的濃度40%與最大的氫氣產率0.42 mol-H2/mol-HLa。評估電子流向,此試程有最少電子利用於微生物生成,而最多的電子利用於氫氣的生成。各試程微生物與氫氣的電子分配呈負相關。
    進行批次實驗,探討pH、起始微生物濃度(X0)與S0/X0對產氫之影響。結果顯示pH = 5.5有最大產率與產氫速率,在三個不同S0/X0的條件下, pH = 6在氫氣產率與產氫速率皆優於 pH = 7的產氫表現。起始微生物濃度越高 (X0=1500 mg-VSS/L)有越小的比產氫速率和較短的lag phase,但不同X0在相同基質條件下氫氣產率沒有明顯差異。另一個S0/X0的批次結果則顯示,隨著初始微生物濃度的提升 (X0 = 300-1700 mg-VSS/L),較多的電子被利用於氫氣生成 (6.4%-10.4%),而較少電子被利用於微生物生成 (9.6%-1.5%)。推測在無高濃度基質抑制產氫的情況下,當提供的初始微生物濃度達一足夠值,微生物傾向於生成氫氣而不傾向於生成微生物。
    利用功能性基因選殖、定序與限制片段長度多型性分析等分子生物技術分析優勢化微生物族群。結果顯示以乳酸與乙酸馴養之微生物族群中,優勢產氫菌為Clostridium tyrobutyricum。連續流與批次產氫試驗之代謝路徑與C. acetobutylicum相似,以乳酸與乙酸做為基質生成氫氣、二氧化碳、丁酸,乙酸可能為反應中的電子接受者。

    The importance of renewable energy sources increases as the issues of fossil fuel exhaustion and global warming become serious. Considering our dependence on energy and the global environment, there is an urgent need in developing a clean and renewable energy source such as hydrogen. In our previous study, wasted residues from a bioethanol fermentation process were found to contain large amount of volatile fatty acids including lactate and acetate. In this study, a continuous-flow stirred tank reactor (CSTR) fed with lactate and acetate was operated to enrich hydrogen-producing bacteria, and the biohydrogen production from utilizing lactate and acetate was evaluated.
    The CSTR was maintained at pH 6 and 35°C, and three hydraulic retention time (HRT= 23, 18 and 12 hrs) and two substrate concentration (HLa/HAc = 15000/4500 mg/L, 30000/9000 mg/L) were employed during this study. At 30000 mg/L of lactate and 9000 mg/L of acetate in the influent feed, a stable biohydrogen yield was attained at 0.42 mmol-H2/mmol-HLa at 18 hrs of HRT, with a hydrogen composition of 40%. In addition to hydrogen, the major metabolite in the CSTR from lactate and acetate consumption was butyrate. Batch experiments were conducted to evaluate fermentative biohydrogen production potential under different pH (5-6.5) and initial substrate-to-biomass (S0/X0=6.7-100) conditions using enriched cultures. The results indicated that pH 5.5 was optimum for achieving the highest hydrogen production rate and yield simultaneously, and pH 6 has higher hydrogen performance under 3 different S0/X0. Furthermore, a higher X0 (lower S0/X0) condition achieved a lower specific hydrogen production rate (SHPR) and a lower lag phase, but the hydrogen yields were similar. Moreover, another batch tests showed that when X0 were from 300 to 1700 mg-VSS/L, the hydrogen yield increased and the biomass yield decreased, in addition, the electron distribution fractions of hydrogen (6.4%-10.4%) and biomass (9.6%-1.5%) also had the same trend.
    Finally, molecular methods including cloning/sequencing and restriction fragment length polymorphism (RFLP) were performed to investigate microbial ecology of lactate/acetate consuming and hydrogen-producing bacteria enriched in the CSTR. The results confirmed that Clostridium tyrobutyricum was the dominant hydrogen producing bacteria enriched in the CSTR. The pathway of hydrogen production in this study is similar with the metabolic pathway of C. acetoutylicum.

    摘要 III Abstract V 誌謝 VII 第一章 前言 1 第二章 文獻回顧 3 2.1 生物產氫程序的種類與發展 3 2.2 厭氧醱酵產氫微生物 5 2.2.1 利用碳水化合物產氫之Clostridia 6 2.2.2 利用乳酸與乙酸產氫之微生物 8 2.3 厭氧醱酵產氫之機制 10 2.3.1 Hydrogenase 10 2.3.2 利用碳水化合物產氫之機制 12 2.3.3 利用乳酸與乙酸產氫之機制 21 2.4 乳酸與乙酸共基質醱酵產氫之相關研究 24 2.5 Clostridium tyrobutyricum 相關研究 25 2.6 厭氧醱酵產氫之環境影響因子 29 2.6.1 HRT 29 2.6.2 pH 30 2.6.3 乙酸 31 2.6.4 丁酸 32 2.6.5 氫氣 32 2.6.6 二氧化碳 33 2.7 功能性基因選殖與定序 34 2.7.1 功能性基因選殖與定序 34 2.7.2 [Fe-Fe]-hydrogenase多樣性 37 第三章 實驗設備與方法 38 3.1 厭氧生物產氫產能試驗 38 3.1.1 植種來源 38 3.1.2 基質之製備 38 3.1.3 營養鹽之製備 38 3.2 厭氧產氫連續流反應槽 41 3.2.1 連續流反應槽設計 41 3.3 批次厭氧氫氣產能試驗 43 3.3.1 厭氧氫氣產能試驗 43 3.3.2 生物產氫活性計量 43 3.4 水質分析項目與使用儀器 44 3.4.1 一般水質分析項目 44 3.4.2 儀器分析 44 3.4.3 數據分析 45 3.5 質量平衡 46 3.6 分子生物檢測鑑定技術 47 3.6.1 DNA萃取 47 3.6.2 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 49 3.6.3 功能性基因選殖與定序 51 第四章 結果與討論 53 4.1 連續流醱酵產氫試程 53 4.2 連續流反應槽各試程之表現與質量平衡 54 4.2.1 Run1: HRT 23, HLa 15000 mg/L 54 4.2.2 Run2: HRT18, HLa 15000 mg/L 56 4.2.3 Run3: HRT18, HLa 30000 mg/L 58 4.2.4 Run4: HRT12, HLa 30000 mg/L 60 4.2.5 Run5: HRT12, HLa 15000 mg/L 62 4.3 CSTR各試程之比較 64 4.3.1 氣體表現 64 4.3.2 產率 65 4.3.3 電子流向與質量平衡 66 4.4 產氫最佳化因子分析 68 4.4.1 pH 68 4.4.2 Initial Biomass 73 4.4.3 S0/X0 76 4.5 微生物族群 82 4.6 產氫代謝路徑 87 第五章 結論與建議 91 第六章 參考文獻 92 附錄 100 附錄一 101 附錄二 102 附錄三 103

    任維傑(2006),「探討厭氧產氫純菌Clostridium在不同pH 下之反應動力機制」, 國立成功大學環境工程研究所碩士論文。
    林哲安(2010)「以代謝通量方法評估 Clostridium tyrobutyricum 之生物產氫表現」,國立成功大學環境工程研究所碩士論文。
    莊崇柏(2009)「利用生質酒精發酵殘渣產氫程序之研究」,國立成功大學環境工程研究所碩士論文。
    劉怡君(2006)「Clostridium tyrobutyricum 在不同水力停留時間下之代謝表現與產氫行為之研究」,國立成功大學環境工程研究所碩士論文。
    Andreesen. (1989), CLOSTRIDIA
    Angenent, L. T., Karim, K., Al-Dahhan, M. H., Wrenn, B. A., & Domiguez-Espinosa, R. 2004. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22(9): 477-485.
    Baghchehsaraee, B., Nakhla, G., Karamanev, D., & Margaritis, A. 2009. Effect of extrinsic lactic acid on fermentative hydrogen production. International Journal of Hydrogen Energy, 34(6): 2573-2579.
    Baghchehsaraee, B., Nakhla, G., Karamanev, D., Margaritis, A., & Reid, G. 2008. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. International Journal of Hydrogen Energy, 33(15): 4064-4073.
    Balows, A., Truper, H., Dworkin, M., Harder, W., & Schleifer, K. H. (1992), The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer-Verlag GmbH.
    Baronofsky, J., Schreurs, W., & Kashket, E. 1984. Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum. Applied and Environmental Microbiology, 48(6): 1134-1139.
    Bryant, M., & Burkey, L. 1956. The characteristics of lactate-fermenting sporeforming anaerobes from silage. Journal of Bacteriology, 71(1): 43.
    Calusinska, M., Happe, T., Joris, B., & Wilmotte, A. 2010. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Microbiology-Sgm, 156: 1575-1588.
    Cato.(1986), BERGEYS MANUAL SYSTE.
    Crabbendam, P. M., Neijssel, O. M., & Tempest, D. W. 1985. Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture. Archives of Microbiology, 142(4): 375-382.
    Dabrock, B., Bahl, H., & Gottschalk, G. 1992. Parameters affecting solvent production by Clostridium pasteurianum. Applied and Environmental Microbiology, 58(4): 1233-1239.
    Das, D., & Veziroglu, T. N. 2001. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26(1): 13-28.
    Datta, R., & Zeikus, J. G. 1985. Modulation of acetone-butanol-ethanol fermentation by carbon-monoxide and organic-acids. Applied and Environmental Microbiology, 49(3): 522-529.
    Davila-Vazquez, G., Arriaga, S., Alatriste-Mondragon, F., de Leon-Rodriguez, A., & Razo-Flores, E. 2008. Fermentative biohydrogen production: trends and perspectives. Reviews in Environmental Science and Bio/Technology, 7(1): 27-45.
    Desvaux, M., Guedon, E., & Petitdemange, H. 2000. Cellulose Catabolism by Clostridium cellulolyticum Growing in Batch Culture on Defined Medium. Applied and Environmental Microbiology, 66(6): 2461-2470.
    Diez-Gonzalez, F., Russell, J., & Hunter, J. 1995. The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate by Clostridium acetobutylicum strain P262. Archives of Microbiology, 164(1): 36-42.
    Diezgonzalez, F., Russell, J. B., & Hunter, J. B. 1995. The role of an nad-independent lactate-dehydrogenase and acetate in the utilization of lactate by clostridium-acetobutylicum strain p262. Archives of Microbiology, 164(1): 36-42.
    F. Sanger, S. N., and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 74(12): 5463–5467.
    Gibson, A., Ellis-Brownlee, R., Cahill, M., Szabo, E., Fletcher, G., & Bremer, P. 2000. The effect of 100% CO2 on the growth of nonproteolytic Clostridium botulinum at chill temperatures. International journal of food microbiology, 54(1-2): 39-48.
    Ginkel, S. V., & Logan, B. E. 2005. Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ. Sci. Technol., 39(23): 9351-9356.
    Girbal, L., Orlygsson, J., Reinders, B., & Gottschal, J. 1997. Why does Clostridium acetireducens not use interspecies hydrogen transfer for growth on leucine? Current Microbiology, 35(3): 155-160.
    Girbal, L., & Soucaille, P. 1994. Regulation of clostridium-acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures - role of nadh/nad ratio and atp pool. Journal of Bacteriology, 176(21): 6433-6438.
    Girbal, L., & Soucaille, P. 1998. Regulation of solvent production in Clostridium acetobutylicum. Trends in Biotechnology, 16(1): 11-16.
    Gottschalk, G.(1986), Bacterial metabolism. New York: Springer-Verlag.
    Gottwald, M., & Gottschalk, G. 1985. The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Archives of Microbiology, 143(1): 42-46.
    Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95-98.
    Hashsham, S. A., Fernandez, A. S., Dollhopf, S. L., Dazzo, F. B., Hickey, R. F., Tiedje, J. M., & Criddle, C. S. 2000. Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose. Applied and Environmental Microbiology, 66(9): 4050-4057.
    Hawkes, F., Dinsdale, R., Hawkes, D., & Hussy, I. 2002. Sustainable fermentative hydrogen production: challenges for process optimisation. International Journal of Hydrogen Energy, 27(11-12): 1339-1347.
    Iannotti, D. A., Pang, T., Totth, B., Elwell, D., Keener, H., & Hoitink, H. 1993. Quantitative respirometric method for monitoring compost stability. Compost science & utilization, 1(3): 52-65.
    Jo, J. H., Jeon, C. O., Lee, S. Y., Lee, D. S., & Park, J. M. 2010. Molecular characterization and homologous overexpression of FeFe -hydrogenase in Clostridium tyrobutyricum JM1. International Journal of Hydrogen Energy, 35(3): 1065-1073.
    Jo, J. H., Lee, D. S., Kim, J., & Park, J. M. 2009. Effect of Initial Glucose Concentrations on Carbon and Energy Balances in Hydrogen-Producing Clostridium tyrobutyricum JM1. Journal of Microbiology and Biotechnology, 19(3): 291-298.
    Jo, J. H., Lee, D. S., Park, D., & Park, J. M. 2008. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresource Technology, 99(14): 6666-6672.
    Jo, J. H., Lee, D. S., Park, D., & Park, J. M. 2008. Statistical optimization of key process variables for enhanced hydrogen production by newly isolated Clostridium tyrobutyricum JM1. International Journal of Hydrogen Energy, 33(19): 5176-5183.
    Jo, J. H., Lee, D. S., & Park, J. M. 2008. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technology, 99(17): 8485-8491.
    Kashket, E. 1982. Stoichiometry of the proton-ATPase of growing and resting, aerobic Escherichia coli. Biochemistry, 21(22): 5534-5538.
    Kell, D., Peck, M., Rodger, G., & Morris, J. 1981. On the permeability to weak acids and bases of the cytoplasmic membrane of. Biochemical and Biophysical Research Communications, 99(1): 81-88.
    Lambert, A., Smith, J., & Dodds, K. 1991. Shelf life extension and microbiological safety of fresh meat—a review. Food Microbiology, 8(4): 267-297.
    Lay, J.-J., Lee, Y.-J., & Noike, T. 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research, 33(11): 2579-2586.
    Lay, J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology and Bioengineering, 68(3): 269-278.
    Lee, H. S., & Rittmann, B. E. 2009. Evaluation of metabolism using stoichiometry in fermentative biohydrogen. Biotechnology and Bioengineering, 102(3): 749-758.
    Lee, H. S., Salerno, M. B., & Rittmann, B. E. 2008. Thermodynamic evaluation on H2 production in glucose fermentation. Environmental Science & Technology, 42(7): 2401-2407.
    Lee, H. S., Vermaas, W. F. J., & Rittmann, B. E. 2010. Biological hydrogen production: prospects and challenges. Trends in Biotechnology, 28(5): 262-271.
    Lee, S. Y., & Papoutsakis, E. T.(1999), Molecular Regulation and Metabolic Engineering of Solvent Production by Clostridium acetobutylicum, CRC Press.
    Li, C. L., & Fang, H. H. P. 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 37(1): 1-39.
    Lin, J.-G., Ma, Y.-S., Chao, A. C., & Huang, C.-L. 1999. BMP test on chemically pretreated sludge. Bioresource Technology, 68(2): 187-192.
    Liu, I. C., Whang, L. M., Ren, W. J., & Lin, P. Y. 2011. The effect of pH on the production of biohydrogen by clostridia: Thermodynamic and metabolic considerations. International Journal of Hydrogen Energy, 36(1): 439-449.
    Logan, B. E., Oh, S. E., Kim, I. S., & Van Ginkel, S. 2002. Biological hydrogen production measured in batch anaerobic respirometers. Environmental Science & Technology, 36(11): 2530-2535.
    Lovitt, R., Shen, G., & Zeikus, J. 1988. Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. Journal of Bacteriology, 170(6): 2809.
    Mathews, J., & Wang, G. Y. 2009. Metabolic pathway engineering for enhanced biohydrogen production. International Journal of Hydrogen Energy, 34(17): 7404-7416.
    Matsumoto, M., & Nishimura, Y. 2007. Hydrogen production by fermentation using acetic acid and lactic acid. Journal of Bioscience and Bioengineering, 103(3): 236-241.
    Nath, K., & Das, D. 2004. Improvement of fermentative hydrogen production: various approaches. Applied Microbiology and Biotechnology, 65(5): 520-529.
    Nochur, S., Demain, A., & Roberts, M. 1992. Carbohydrate utilization by Clostridium thermocellum: Importance of internal pH in regulating growth. Enzyme and Microbial Technology, 14(5): 338-349.
    Noike, T., Takabatake, H., Mizuno, O., & Ohba, M. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. International Journal of Hydrogen Energy, 27(11-12): 1367-1371.
    Ntaikou, I., Antonopoulou, G., & Lyberatos, G. 2010. Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review. Waste and Biomass Valorization, 1(1): 21-39.
    Padan, E., ZILBERSTEIN, D., & ROTTENBERG, H. 1976. The Proton Electrochemical Gradient in Escherichia coli Cells. European Journal of Biochemistry, 63(2): 533-541.
    Papoutsakis, E. T., & Meyer, C. L. 1985. Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnology and Bioengineering, 27(1): 50-66.
    Rittmann, B. E., & McCarty, P. L.(2001), Environmental biotechnology: principles and applications, New York: McGraw-Hill.
    Saitou, N., & Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4(4): 406-425.
    Schmidt, O., Drake, H. L., & Horn, M. A. 2010. Hitherto Unknown Fe-Fe -Hydrogenase Gene Diversity in Anaerobes and Anoxic Enrichments from a Moderately Acidic Fen. Applied and Environmental Microbiology, 76(6): 2027-2031.
    Schut, G. J., & Adams, M. W. W. 2009. The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production. Journal of Bacteriology, 191(13): 4451-4457.
    Schwartz, R., & Keller, F. 1982. Acetic Acid Production by Clostridium thermoaceticum in pH-Controlled Batch Fermentations at Acidic pH. Applied and Environmental Microbiology, 43(6): 1385-1392.
    Shizas, I., & Bagley, D. M. 2005. Fermentative hydrogen production in a system using anaerobic digester sludge without heat treatment as a biomass source. Water Science and Technology, 52(1-2): 139-144.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution.
    Tanisho, S., Kuromoto, M., & Kadokura, N. 1998. Effect of CO2 removal on hydrogen production by fermentation. International Journal of Hydrogen Energy, 23(7): 559-563.
    Tanisho, S., Suzuki, Y., & Wakao, N. 1987. Fermentative hydrogen evolution by enterobacter-aerogenes strain e-82005. International Journal of Hydrogen Energy, 12(9): 623-627.
    Terracciano, J., Schreurs, W., & Kashket, E. 1987. Membrane H+ Conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: Evidence for Electrogenic Na+/H+ Antiport in Clostridium thermoaceticum. Applied and Environmental Microbiology, 53(4): 782-786.
    Thauer, R. K., Jungermann, K., & Decker, K. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews, 41(1): 100-180.
    van Andel, J. G., Zoutberg, G. R., Crabbendam, P. M., & Breure, A. M. 1985. Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture. Applied Microbiology and Biotechnology, 23(1): 21-26.
    Van Ginkel, S., & Logan, B. 2005. Increased biological hydrogen production with reduced organic loading. Water Research, 39(16): 3819-3826.
    Vasconcelos, I., Girbal, L., & Soucaille, P. 1994. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. Journal of Bacteriology, 176(5): 1443.
    Vesell, E., & Yielding, K. 1966. Effects of pH, ionic strength, and metabolic intermediates on the rates of heat inactivation of lactate dehydrogenase isozymes. Proceedings of the National Academy of Sciences of the United States of America, 56(4): 1317.
    WANG, G., & WANG, D. I. C. 1984. Elucidation of Growth Inhibition and Acetic Acid Production by Clostridium thermoaceticum. Applied and Environmental Microbiology, 47(2): 294-298.
    Whang, L.-M., Lin, C.-A., Liu, I. C., Wu, C.-W., & Cheng, H.-H. Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition. Bioresource Technology, In Press, Corrected Proof.
    Woolford, M. K(1984), The silage fermentation: Marcel Dekker, Inc.
    Wu, Z., & Yang, S.-T. 2003. Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum. Biotechnology and Bioengineering, 82(1): 93-102.
    Yokoi, H., Mori, S., Hirose, J., Hayashi, S., & Takasaki, Y. 1998. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M[h]19. Biotechnology Letters, 20(9): 895-899.
    Zhu, Y., & Yang, S.-T. 2004. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. Journal of Biotechnology, 110(2): 143-157.
    Zhu, Y., & Yang, S. T. 2004. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. Journal of Biotechnology, 110(2): 143-157.
    Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & VAN 'T Riet, K. 1990. Modeling of the Bacterial Growth Curve. Applied and Environmental Microbiology, 56(6): 1875-1881.

    下載圖示 校內:2012-08-08公開
    校外:2012-08-08公開
    QR CODE