| 研究生: |
柯尊發 Ko, Tsun-Fa |
|---|---|
| 論文名稱: |
巨磁阻Sr2FeMoO6之合成機構、結構及其性質之探討 Formation Mechanism, Structure and Properties of Sr2FeMoO6 |
| 指導教授: |
方滄澤
Fang, Tsang-Tse |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 巨磁阻 、雙鈣鈦礦 、鍶鐵鉬氧 |
| 外文關鍵詞: | SeFeO3-x, Sr2FeMoO6, double perovskite, magnetoresistance, GMR |
| 相關次數: | 點閱:112 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
從過去文獻中知道要完全合成單相雙鈣鈦礦結構Sr2FeMoO6-δ並不易。為了解Sr2FeMoO6-δ的合成過程,本實驗以不同的氣氛對其合成演化作一系列的分析,以建立完整之合成機制。
本實驗以SrCO3、MoO3、Fe2O3三種初始依計量比球磨混合,其中SrCO3、MoO3在混合過程極易生成SrMoO4。在680℃以上時SrFeO3-x開始產生,此時Mo才會逐漸固溶入SrFeO3-x以取代Fe。在空氣中Mo的固溶量有限,因此即使在1100℃時SrMoO4依然大量存在。因為Fe4+半徑為72.5pm,而Fe3+半徑(78.5pm)與Mo5+半徑(75.0pm)皆大於Fe4+ (72.5pm),所以當Mo5+取代Fe4+時晶格將會被扭曲。當改成還原氣氛條件時,可以增加氧缺陷的量使Mo得以進入SrFeO3-x晶格中因而形成單相Sr2FeMoO6-δ。但是由於SrMoO4極易在較低溫(500℃以下)甚至球磨時就形成了,如此增加SrMoO4與SrFeO3-x之間的擴散距離,同時也增加擴散的困難度。利用冷均壓處理的試片在高溫下還原氣氛中直接反應燒結,可以得到良好的Sr2FeMoO6-δ單一相,如此不僅縮短擴散間的距離,也有助單相的產生。
針對Mo與Fe含量在不等比例下,由於Fe、Mo的反鐵磁耦合使得隨著Mo添加量增加其使淨磁化量也愈大。其電性由於Mo5+具有較大4d軌域會與其鄰近Fe3+的3d侷限電子混成為π*-β分子軌域而形成一個狹窄的帶,如此造成金屬性的傳導。當Mo、Fe離子比例小於1時,磁性以Fe3+-O2--Fe3+耦合作用為主,而Fe之間無法形成混成軌域,電子只能靠跳躍來傳遞,因此造成半導性特徵。
Abstract
From the past literature we know that it is not easy to obtain the single phase Sr2FeMoO6. In this study we discussed the formation mechanism of Sr2FeMoO6 in the air and reduced stream. Furthermore, we also performed the magnetic、resistivity behavior and structural variation with the doping content of Mo ion .
Stoichiometric powder of SrCO3, Fe2O3 and MoO3 were mixed with ball-milling, the mixture was then calcined at different temperature for 3 hours in air and reduced stream respectively. We found that in air the Mo5+ has a solubility limitation in Sr2FeO3-x matrix. From the viewpoint of radius, both the radius of Mo5+(75.0 pm) and Fe3+(78.5 pm) are larger than Fe4+(72.5 pm), it will lead to lattice distortion when Mo5+ substitutes for Fe4+. If the sample was treated in reduced stream, the oxygen vacancies in the SrFeO3-x matrix increase and allow Mo5+ to diffuse into Sr2FeO3-x successfully. From the synthetic process, SrMoO4 first generated below 500℃ even though the ball-milling process, and then it leads to the diffusion distance of Mo5+ is too large to synthesize the single phase Sr2FeMoO6. We can obtain the tight packing bulk by CIP process. And then we get excellent single phase Sr2FeMoO6 through direct reaction and sintering in reduced stream.
Finally, we compare the magnetization and resistivity with different doping content of Mo in Sr2Fe2-xMoxO6-δ. The Fe3+(3d5)-O2--Mo5+(4d1) antiferromagnetically coupling leads to a net magnetic moment of 4μB/f.u. . However the magnetization decreases when Mo doping content was less than Fe ion. Because Mo5+(4d1) with large orbital extending to the neighbors, the sufficient overlapping can occur through the linkage of Fe3+-O2--Mo5+ and then form a narrow band results in the metallic conduction in Sr2FeMoO6. With Mo doping content decreases, the electrical property shows the semiconductive behavior due to the increasing of Fe3+-O2--Fe3+ couple and then lacks overlapping orbital between Fe ions.
參考文獻
1. R. Hunt, IEEE Trans. Magn. MAG-7, 150 (1971).
2. K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature, 395, 667 (1998).
3. T. Nakamura, K. Kunihara, and Y. Hirose, Mater. Res. Bull. 16, 321 (1981).
4. T. T. Fang, M. S. Wu, and T. F. Ko, J. Mater. Sci. Lett. 20, 1609 (2001).
5. F. K. Patterson, C. W. Moeller and R. Ward, Inorg. Chem. 2, 196 (1963).
6. T. Nakagawa, J. Phys. Soc. Jpn. 24, 806 (1968).
7. B. García-Landa, C. Ritter , M.R. Ibarra, J. Blasco, P. A. Algarabel, R. Mahendiran, and J. García, Sol. Stat. Comm. 110, 435(1999).
8. C. L. Yuan, S. G. Wang, W. H. Song, T. Yu, J.M. Dai, S. L. Ye, and Y. P. Sun, Appl. Phys. Lett. 75, 3853 (1999).
9. Soshin Chikazumi著,張煦、李學養 譯,“磁性物理學”,聯經出版社,(1982)。
10. Charles Kittel, ”Introduction to Solid State Physics” 7th ed., John Wiley & Sons. Inc., Chap.14, 15 (1996).
11. P. Langevin, Ann. Chem. et Phys. 5, 70 (1905)
12. 中華民國粉末冶金協會,“陶瓷技術手冊(上)”,經濟部,561 (1994)。
13. P. Drude, Ann. Der Physik, 1, 566 (1900).
14. P. Drude, Ann. Der Physik, 3, 369 (1900).
15. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chaxeles, Phys. Rev. Lett. 61, 2472 (1988).
16. “中華民國磁性技術協會”,會訊第16期,(1999)。
17. X. Bian, A. Altounian, J. O. Stom-Olsen, A. Zaluska, Y. Huai, and R. W. Cochrane, J.Appl. Phys, 75, 6560 (1994).
18. Y. Kamiguchi, K. Saito, H. Iwasaki, M. O. use, and S. Nakamura, J. Appl. Phys. 79, 6399 (1996).
19. S. Jin, T. H. Tiefel, M. McCormak, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science, 264, 413 (1994).
20. B. Dieny et al, J. Mag. Mag. Materials, 136, 335 (1994).
21. B. Dieny et al, Phys. Reys. Rev. B 43, 1297 (1991).
22. “中華民國磁性技術協會”,會訊第12期,(1997)。
23. A. V. Pohm et al, paper CB-1, INTERMAG 97, New Orleans, Louisiana, USA, April 1, 1997.
24. D. D. Tang et al, IEEE Trans. Mag. 31, 2603 (1995).
25. J. E. Lennard-Jones, Trans. Faraday Soc. 28, 33 (1932).
26. D. E. Williams, “Solid State Gas Sensors”, ed. by P. T. Moseley and B. G. Tofield (Bristol: Hilger), 115 (1987).
27. H. D. Megaw, Proc. Phys. Soc. 58, 133 (1946).
28. F. S. Galasso, “Structure, Properties and Preparation of Perovskite- type Compounds,” Pergamon Press, New York (1969).
29. S. Nakayama, T. Nakagawa, and S. Nomura, J. Phys. Soc. Jpn. 24, 219 (1968).
30. 近角聰信, “磁性物理學”,聯經出版社,91 (1982)。
31. P. W. Anderson, Phys. Rev. 79, 350 (1950).
32. J. M. Longo and R. Ward, J. Am. Chem. Soc. 83 ,1088 (1961).
33. A. W. Sleight, J. M. Longo, and R. Ward, Inorg. Chem. 1, 245 (1962).
34. A. W. Sleight and J. F. Weiher, J. Phys. Chem. Solids. 33, 679 (1972).
35. R. P. Borges, R. M. Thomas, C. Cullinam, J. M. D. Coey, R. Suryanarayanan, L. Ben-Dor, L. Pinsard-Gaudart, and A. Revcolevschi, J. Phys. : Condens. Matter. 11 L445 (1999).
36. C.N.R. Rao, B. Raveau, “Colossal Magnetoresistance, Charge Or- dering and Related Properties of Manganese Oxides,” World Scientific, 179 (1998).
37. J. E. Evetts, M. G. Blamire, N. D. Mathur, S. P. Isaac, B. S. Teo, L. F. Cohen, and J. L. MacManus-Driscoll, Phil. Trans. R. Soc. A 356, 1593 (1998).
38. M. Ziese, Rep. Prog. Phys. 65 (2), 151 (2002).
39. T. Kise, T. Ogasawara, M. Ashida, Y. Tomioka, Y. Tokura, and M. Kuwata-Gonokami, Phy. Rev. Lett. 85, 9 ,1986 (2000).
40. J. B. MacChesney, R. C. Sherwood, and J. F. Petter, J. Chem. Phys. 43, 1907 (1965);P. K. Gallagher, J. B. MacChesney, and D. N. E. Buchanan, J. chem. Phys. 41, 2429 (1964).
41. B. C. Tofield, C. Greaves, and B. E. F. Fender, Mater. Res. Bull. 10, 737 (1975) ; B. C. Tofield, React. Solids [Proc. Int. Symp.] 8th,253 (1976).
42. T. Takeda, Y. Yamaguchi, S. Tomiyoshi, M. Fukase, M. Sugimoto and H. Watanabe, J. Phys. Soc. Japan, 24, 446 (1968).
43. N. Ea, These Docteur 3em cycle, Universite de Bordeaux 1 (1983);J. C. Grenier, N. Ea, M. Pouchard, and P. Hagenmuller, J. Solid State Chem. 58, 243 (1985).
44. S. Shin, and M. Yonemura, Mat. Res. Bull. 13, 1017 (1978).
45. P. Woodward, R. D. Hoffmann, and A. W. Sleight, J. Mater. Res. 9, 2118 (1994).
46. F. S. Galasso, “Structure, Properties and Preparation of Perovskite- type Compounds,” Pergamon Press, New York (1969).
47. A. Amin, R. E. Newnham, L. E. Cross and S. Nomura, J. of Solid State Chem. 35, 267 (1990).
48. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B 25, 925 (1969).
49. Li. Balcells, J. Navarro, M. Bibes, A. Roig, B. Martý´nez, and J. Fontcuberta, Appl. Phys. Lett. 78, 781 (2001).
50. D. D. Sarma, E. V. Sampathkumaran, S. Ray, R. Nagarajan, S. Majumdar, A. Kumar, G. Nalini, and T. N. Guru Row, Solid State Commun. 114, 465 (2000).
51. D. Sanchez, J. A. Alonso, M. G. Hernandez, M. J. Martinez-Lope, J. L. Martinez, A. Mellergard, Phys. Rev. B. 65 (10), 104426 (2002).
52. A. S. Ogale, S. B. Ogale, R. Ramesh, and T. Venkatessan, Appl. Phys. Lett. 75, 537 (1999).
53. Y. Moritomo, N. Shimamoto, X. Xu, A. Machida, E. Nishibori, M. Takata, M. Sakata and A. Nakamura, Jpn. J. Appl. Phys. 40, L672 (2001).
54. The word ‘‘mis-site’’ implies the presence of the Fe , Mo atom on the site designated in an ordered structure for the Mo~Fe atom (see Ref. 2).
55. H. Asano, S. B. Ogale, J. Garrison, A. Orozco, E. Li, Y. H. Li, V. Smolyaninova, C. Galley, M. Downes, M. Rajeswari, R. Ramesh, and T. Venkatesan, Appl. Phys. Lett. 74, 3696 (1999).
56. M. Itoh, I. Ohta, and Y. Inaguma, Mater. Sci. Eng. B 41, 55 (1996).
57. M. S. Moreno, J. E. Gayone, M. Abbate, A. Caneiro, D. Niebieskikwiat, R. D. Sanchez, A. de Siervo, R. Landers, G. Zampieri, Sol. Stat. Comm. 120, 161 (2001)
58. J. Linden, T. Yamamoto, M. Karppinen, H. Yamauchi, and T. Pietari, Appl. Phys. Lett. 76, 2925 (2000).
59. H.Q. Yin, J.-S. Zhou, J.-P. Zhou, R. Dass, J.T. McDevitt, and J.B. Goodenough, Appl. Phys. Lett. 75, 2812 (1999).
60. J. Linde´n, P. Karen, A. Kjekshus, J. Miettinen, T. Pietari, and M. Karppinen, Phys. Rev. B 60, 15251 (1999).
61. International Table for X-Ray Crystallography (The International Union of Crystallography, Birmingham, England, 1952), Vol. 1.
62. Natl. Bur. Std. (U.S.) Monograph 25, (1962).
63. Bo Lindblom and Erik Rosén, Acta Chem. Scan. A 40, 452 (1986).
64. K. Kamata, T. Nakamura, and T. Sata, Mat. Res. Bull. 10, 373 (1975).
65. JCPDS NO. 87-0722.
66. L. H. Son, N. X. Phuc, P. V. Phuc, N. M. Hong, L.V. Hong, J. Raman Spectrosc. 32 (10), 817 (2001).
67. M. F. Yan, R. L. Barns, H. M. O`Bryan, Jr, P. K. Gallagher, R. C. Sherwood, and S. Jin, Appl. Phys. Lett. 51 (7), 532 (1987).
68. Masanori ABE, T. Nakagawa, and S. Nomura, J. the Phys. Soc. Jpn. 35 (5), 1360 (1973).
69. S. Nomura, M. Kawachi, and F. Kojima: submitted to J. Phys. Soc. Japan.
70. J. M. Greneche, M. Venkatesan, R. Suryanarayanan, and J. M. D. Coey, Phys. Rev. B 63, 174403 (2001).
71. J. B. MacChesney, H. J. Williams, R. C. Sherwood, and J. F. Potter, Mat. Res. Bull. 1, 113 (1966).
72. JCPDS NO. 45-0398.
73. JCPDS NO. 45-0399.
74. M. U. Cohen, Rev. Sci. Instr. 6, 68 (1935) and 7, 155 (1936).
75. T. Manako, M. Izumi, Y. Konishi, K.-I. Kobayashi, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 74 (15), 2215 (1999).
76. T. Yamamoto, J. Liimatainen, J. Lindén, M. Karppinen, and H. Yamauchi, J. Mat. Chem. 10, 2342 (2000).
77. Y. Tomioka, T. Okuda, Y. Okimoto, R. Kumai, and K.-I. Kobayashi, Phys. Rev. B. 61 (1), 422 (2000).
78. D. Niebieskikwiat, R.D. Sánchez, A. Caneiro, L. Morales, M. V. Mansilla, and L. E. Hueso C. Argentina, Phys. Rev. B. 62 (5), 3340 (2000).