簡易檢索 / 詳目顯示

研究生: 羅世嘉
Lou, Shyh-Jia
論文名稱: 冷凍手術合併硼中子捕獲療法之初期研究 -電腦斷層顯示藥物滯留在治療區內之探討
A pilot study of cryosurgery combined with boron neutron capture therapy (BNCT) -Computed tomography outlines drug retention in porcine renal cryosurgical lesion
指導教授: 張憲彰
Chang, Hsien-Chang
楊文宏
Yang, Wen-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 76
中文關鍵詞: 冷凍治療硼中子捕獲療法感應偶合電漿質譜儀電腦斷層
外文關鍵詞: Computed tomography, ICP/MS, Cryosurgery, Boron neutron capture therapy
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

      冷凍治療是一種最小侵入的治療手段,治療後會有一物理變化之冰球介面,可用作為治療的指標。冰凍固化後可以阻斷化學物質流動,很有潛力可以用於滯留藥物。但是它的缺點是,癌細胞在冰凍邊界的致死情況不容易控制。硼中子捕獲療法的優點是輻射射程短,大約只有一個細胞的大小;瓶頸是其藥物須選擇性聚集在腫瘤細胞內,且相鄰的正常組織藥物濃度不能太高。冷凍治療合併硼中子捕獲療法的二元療法 (binary therapy),是一種使用兩種以上無毒的物質導入細胞造成組織壞死的一種療法。我們認為冷凍手術治療可以滯留藥物,而且這個藥物的濃度可以利用臨床上常用的電腦斷層影像來顯示。
      因為一般二元療法之藥物不易在影像上觀測,因此利用電腦斷層影像可見之含碘造影劑伴隨一定比例之硼酸,用以研究冷凍手術進行中之冰球變化及評估藥物滯留行為。實驗分做四部份,首先是將造影劑稀釋成不同濃度,予已知濃度下之造影劑進行電腦斷層掃描看是否符合稀釋原則;其次,利用已摘除之新鮮豬腎經由腎動脈注射合併硼酸之造影劑及生理食鹽水,並同時進行冷凍手術模擬過程及電腦斷層影像監控。活體動物實驗利用26-31公斤之健康活豬,於手術房中進行動脈給藥及冷凍手術模擬,並於實驗後立即摘除腎臟進行電腦斷層影像觀察藥物分佈。最後取出體外豬腎模型及活體動物模型實驗後之樣本,分別對冰凍區及非冰凍區組織採樣以進行感應偶合電漿質譜儀之藥物濃度分析。
      本研究證明冷凍手術有高濃度之藥物滯留效果,可以提高腫瘤區之藥物濃度,以改善硼中子捕獲療法藥物選擇性不佳之困擾。利用含碘造影劑當作示蹤劑於電腦斷層影像下,可以方便的監控及預估藥物濃度以避免治療過當或治療不足。雖然本初期研究尚無法證明冷凍手術合併硼中子捕獲療法之互補效果;冷凍手術可以滯留藥物的事實顯示,此二元療法非常有潛力於硼中子捕獲療法之應用。另外,未來若改變其他治療藥物,或是配合冷凍手術之冰球操控及多探頭技術,更可以設計出臨床需要之藥物滯留體積及形狀。

    Abstract
     Cryosurgery aims to be a minimal invasive procedure .The changeable physical interface can be monitoring by the imaging modality during the frozen process which was the advantage of the cryosurgery. However, difficulty in controlling extent of killing in cryosurgery is the major problem. The radiation of boron neutron capture therapy (BNCT) has powerful cell toxicity and short range which equal to 10 m ( only one cell diameter). But highly selective distribution is not easy to achieve. We consider cryosurgery and binary therapy could be complementary to each other. And investigate the theoretical advantages in an ex vivo and in vivo porcine renal models with the computed tomography as the following.
     Because the drugs of the BNCT were not seen in the CT scan , So that we combined iodinated contrast media and boric acid to simulated the drugs retention in the cryosurgery. (1) A serial dilution of contrast medium were examination by the computed tomography, The CT number was retrieved after the computed tomography was done in estimation concentration of contrast medium. (2) Porcine kidneys were harvested freshly and a catheter was inserted into the cut end of the arteries for injections of the contrast medium ( contain boric acid) and methylene blue saline . Two other catheters were inserted in the renal vein and the ureter to drain out the fluid. Contrast medium and normal saline irrigation was done while doing cryosurgery at the same time. The distribution of the contrast medium was observed by computed tomography examination.(3) In vivo animal model , 26- to 31-kg pigs were submitted to the study of cryosurgery in retaining the contrast medium. After euthanized, the kidneys were kept frozen at -70℃, before computed tomography examination. (4) ICPMS analyzed the renal parenchyma tissue (frozen and non-frozen area) to estimated the concentrations of the boron and iodine. The correlation of the concentration of boron with CT number were studied.
     This experiment shows that cryosurgery could be used to retain iodine in the frozen area for a binary therapy in CT scan, which we believe it’s could be applied to other kind of drugs that we intended to use. The iodine could also be used as an indicator to estimate the extent of high concentrated in the frozen area. We can monitoring the drugs retention in the cryosurgical process and predict the concentration of the iodine (and non-iodine). The Future, we can control the cryosurgical procedural to make different retention volume and shape to suited the clinical application .

    目錄 中文摘要……………………………………………………Ⅰ 英文摘要……………………………………………………Ⅱ 誌謝…………………………………………………………Ⅲ 表目錄………………………………………………………Ⅳ 圖目錄………………………………………………………Ⅴ 第一章 前言………………………………………………1 1.1 介紹冷凍手術 (cryosurgery) 及其致死機制……………………1 1.2 冷凍手術之臨床應用優點及限制…………………………………3 1.3 硼中子捕獲治療 (BNCT )………………………………………6 1.4 電腦斷層攝影技術之基本原理……………………………7 1.5 實驗動機及目的…………………………………………………9 1.5.1 實驗動機………………………………………………9 1.5.2 實驗目的……………………………………………10 1.6 實驗架構…………………………………………………………11 第二章 實驗設備及方法…………………………………13 2.1 利用CT 值預估造影劑藥物濃度………………………13 2.1.1 造影劑之介紹…………………………………13 2.1.2 造影劑標準品之稀釋及電腦斷層掃描…………15 2.1.3 造影劑標準檢量線預估含碘造影劑濃度…………15 2.2 電腦斷層監控冷凍手術滯留藥物之體外模擬系統……………18 2.2.1 體外模擬系統………………………………………18 2.2.2 新鮮猪腎之取得及前處理……………………19 2.2.3 給藥系統………………………………………20 2.2.4 冰凍系統之硬體設備……………………………20 2.2.5 藥品與配製………………………………………21 2.2.6 電腦斷層取像方式………………………………22 2.3 活體動物實驗評估藥物於冰凍區之滯留效果………………24 2.3.1 活體動物實驗使用藥物…………………………24 2.3.2 活體動物實驗步驟…………………………25 2.4 實際樣品藥物濃度檢測…………………………………………26 2.4.1 感應偶合電漿質譜儀之基本原理介紹…………26 2.4.2 標準品備製及檢量線製作………………………28 2.4.3 樣本取樣及後處理…………………………………29 第三章 結果與討論………………………………………32 3.1 電腦斷層影像之CT 值技術預估含碘造影劑藥物濃度…………32 3.1.1 3 個冰凍循環之顯影劑標準品C T 值…………32 3.1.2 決定造影劑標準品之檢量線………………………34 3.1.3 造影劑濃度預估檢量線之驗證……………………37 3.1.4 冰凍後體積增加導致CT 值降低………………39 3.2 電腦斷層監控體外實驗模型之藥物滯留效果評估……………41 3.2.1 體外動物實驗模型……………………………42 3.2.2 CT 影像上冰凍區與非冰凍區明顯之差異……44 3.3 活體動物實驗之藥物於冰凍區之固定效果評估…………47 3.4 感應偶合電漿質譜儀之腎臟組織藥物殘留分析………………51 3.4.1 標準品備製及檢量線製作………………………51 3.4.2 標準品在ICPMS 下之訊號表現………………53 3.4.3 實際樣本藥物殘留分析……………………………56 3.5 討論…………………………………………………………………59 第四章 結論………………………………………………...66 4.1 電腦斷層之CT 值技術預估含碘造影劑之藥物濃度…………66 4.2 冷凍手術滯留藥物於冰凍區之電腦斷層監控系統建立與評估…67 4.3 感應偶合電漿質譜儀偵測藥物濃度與CT 值之相關性驗證……67 4.4 總 結……………………………………………………………68 參考文獻……………………………………………………70 附錄…………………………………………………………73

    1. 彭欣欣, 細胞冷凍致死之溫度因子探討, 國立成功大 學醫學工程研究所碩士論文,1999.
    2. 廖淑婷, 探討溫度因子對細胞死亡邊界之影響,國立成功大學醫學工程研究所碩士論文,2001.
    3. A. A. Gage, J. Baust,” Review mechanisms of tissue injury in cryosurgery”, Cryobiology, 37, 171–186, 1998.
    4. S. Y. Nakada, F. T. Lee.,”Laparscopic cryosurgery of the kidney in the porcine model : an acute histological study”, Urology, 51, 161-166, 1998.
    5. Y. Rabin, B. Thomas,” Long-Term Follow-Up Post-Cryosurgery in a Sheep Breast Model”, Cryobiology, 39, 29–46, 1999.
    6. N. E. Hoffmann, J. C. Bschof, ” The Cryobiology of Ccryosurgical injury”, Urology, 60, 40–49, 2002.
    7. C. C. Rupp, N. E. Hoffmann, F. R. Schmidlin, D. J. Swanlund, J. C. Bischof, J. E. Coada, “Cyosurgical changes in the porcine kidney: histologic analysis with thermal history correlation”, Cryobiology, 45, 167–182, 2002.
    8. M. O. Maiwand, J. M. Evans, J. E. Beeson,” The application of cryosurgery in the treatment of lung cancer”, Cryobiology, 48, 55–61 , 2004.
    9. I. S. Gill,” Renal Cryotherapy : PRO”, Urology, 65, 415–418, 2005.
    10. W. H. Yang, S. T. Liao, S. Y. Shen, S. C. Chang,” The speed of ice growth as an important indicator in cryosurgery”, The Journal of Urology, 172, 345–348, 2004.
    11. J. Tacke, R. Speetzen, I. Heschel, D. W. Hunter, ” Imaging of Interstitial Cryotherapy—An in Vitro Comparison of Ultrasound, Computed Tomography, and Magnetic Resonance Imaging”, Cryobiology, 38, 250–259, 1999.
    12. J. C. Saliken ,” The evolution and state of modern technology for peostate cryosurgery”, Urology, 60, 26–33, 2002.
    13. R. Baissalov, ” Suppression of high-density artifacts in x-ray CT images using temporal digital subtraction with application to cryotherapy”, Physics in Medicine and Biology, 45, 55-59, 2000.
    14. W. Jikun ,” X-ray high-density artifact suppression in cryosurgery”, Physics in Medicine and Biology, 47, 319-326, 2002.
    15. J. P. Wansapura , B. L. Daniel, J. Pauly ,” Temperature mapping of frozen tissue using eddy current compensated half excitation RF pulses”, Magnetic Resonance in Medicine, 46, 985–992, 2001.
    16. B. L. Daniel , K. Butts, W. F. Block, “ Magnetic resonance imaging of frozen tissues: temperature-dependent MR signal characteristics and relevance for MR monitoring of cryosurgery”, Magnetic Resonance in Medicine, 41, 627–630, 1999.
    17. J. C. Gilbert , B. Rubinsky, S. T. Wong , “ Temperature determination in the frozen region during cryosurgery of rabbit liver using MR image analysis”, Magnetic Resonance Imaging, 15, 657–667, 1997.
    18. J. C. Rewcastle , G. A. Sandison , L. J. Hahn, “ A model for the time-dependent thermal distribution within an iceball surrounding a cryoprobe”, Physics in Medicine and Biology, 43, 3519–3534, 1998.
    19. Z. Chang , J. J. Finkelstein , H. Ma, “ Development of a high-performance multiprobe cryosurgical device, ” Biomedical Instrumentation & Technology, 28, 383–390, 1994.
    20. J. C. Rewcastle, G. A. Sandison, K. Muldrew, “ A model for the time dependent three-dimensional thermal distribution within iceballs surrounding multiple cryoprobes”, Medical Physics, 28, 1125–1137, 2001.
    21. G. A. Sandison, “ Future directions for cryosurgery treatment planning”, Urology, 60, 50–55, 2002.
    22. 潘欽、薛燕婉、林滄浪、羅建華, ”原子能發展與科技”, 科學發展月刊, 29卷,10期, 707-715, 2001.
    23. B. K. Shull, D. E. Spielvogel, G. head , R. G. Aswamy, S. Sankar, K. Devito, “ Studies on the Structure of the Complex of the Boron Neutron Capture Therapy Drug, L-p-Boronophenylalanine, with Fructose and Related Carbohydrates: Chemical and 13C NMR Evidence for the b-D-Fructofuranose”, Journal of Pharmaceutical Science, 89, 215-222, 2000.
    24. J. H. Goodman, ” Boron neutron capture therapy of brain tumors: biodistribution, pharmacokinetics, and radiation dosimetry of sodium borocaptate in patients with gliomas”, Neurosurgery, 47, 608-622, 2000.
    25. R. Durance ,” Quantitative image and microlocalization of bron-10 in brain tumors and infiltrating tumor cells by SIMS ion microscopy : relevance to neutron capture therapy”, Cancer Research, 61, 8179-8187, 2001.
    26. G. Sragligotto, H. Franlhauser, “Biodistribution of boron sulfhydryl for boron neutron capture therapy in patients with intracranial tumors”, Neurosurgery, 36, 285-292, 1995.
    27. F. I. Chou, “ Synthesis and In Vitro Evaluation of the Phenylboric Acid Derivative Entrapped Lipiodol in Boron Neutron Capture Therapy for Hepatoma,” Anticancer Research, 23, 3955-3964, 2003.
    28. S. Obayashia, I. Katoa, K. Onob, S. I. Masunagab, M. Suzukib, K. Nagatab, Y. Sakuraic, Y. Yuraa, “Delivery of 10boron to oral squamous cell carcinoma using boronophenylalanine and borocaptate sodium for boron neutron capture therapy “, Oral Oncology, 40, 474–482, 2004.
    29. L. E. Kreimann, M. E. Itoiz, J. Longhino, H. Blaumann, O. Calzetta, A. E. Schwint, “ Boron Neutron Capture Therapy for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model”, Cancer Research, 61, 8638–8642, 2001.
    30. R. F. Barth, W. Yang, J. H. Rotaru, “ Boron Neutron Capture Therapy of brain tumors: Enhanced Survival and cure after blood- brain barrier disruption and intracarotid injectionof Sodium Borocaptate and boronophenlalanine”, International Journal of Radiation Oncology • Biology • Physics, 47, 209–218, 2000.
    31. 莊克士, “ 醫學影像物理學”, 411-416, 合記出版社, 1998.
    32.http://www.vghtpe.gov.tw/~pharm/drugbulltin/content/86/drugbulltin-text-861105. htm (台北榮總86藥訓 黃輝慶)
    33. R. N. Nancy, N. Costa, “Understanding Contrast Media”, Journal of Infusion Nursing”, 27, 302-312, 2004.
    34. M. A. Bettmann, “Frequently Asked Questions: Iodinated Contrast Agents”, Radiograpgics, 24,3-9, 2004.
    35. P. Aspelin, ” Nephrotoxcity and the Role of Contrast Media”, Radiation Medicine, 22, 377-378, 2004.
    36. S. K. Morcos, H. S. Thomsen, ” European Society of Urogential Radiology guidelines on administering contrast media”, Abomen Image, 28, 187-190 2003.
    37. L. Sawmiller, “ The differential effect of contrast agent on endothelial cell and smooth cell growth in vitro”, Journal of Vascular Surgery, 27, 1128-1140, 1998.
    38. K. A. Lindert, M. K. Terris, ” Effect of Contrast Material on Transitional Cell Carcinoma Viability”, Urology, 56, 876-879, 2000.
    39. M. R. Rudnick, S. Goldfard, ” Pathogenesis of contrast Induced Nephropathy: Experimental and Clinical Observation with an Emphasis on the role of osmolality”, Reviews in Cardiovascular Medicine, 4, 28-33, 2003.
    40. Guerbert 原廠說明書, http://www.guerbet-group.com/, (Guerbet, Aulnay/s/Bois, France)
    41. http://www.perkinelmer.com
    42. D. B. Plewes, P. B. Deam, “ The influence of partial volume average on sphere detectability in computed tomography”, Physics in Medicine and Biology,, 26, 913-919, 1981.
    53. J. Shirasishi, K. Tsuda, Y. Inoue, Y. Onoyama, ” Measurement of CT section thickness by using the partial volume effect”, Radiology, 184, 870-872, 1992.
    44. 台大光電中心:光動療法 http://www.bioweb.com.tw/epaper/paper131.htm
    45. 李明一 , “光動療法” http://www.umm.edu/pdt/?source=google
    46. T. S. Curry, J. E. Dowwdey, R. C. Murry,” Christen’s Physics of Diagnostic Radiology”, Lea & Febiger, London, 289-322, 1990.
    47.http://www.amershamhealth.com/medcyclopaedia/medical/
    Volume%20III%201/HOUNSFIELD%20UNIT.asp?Query=Sample+CT+numbers+for+various+tissues&Title=on&
    Text=on&Caption=on&mode=All&Search.x=29&Search.y=18
    48. G. B. Saha ,“Fundamentals of Nuclear Pharmacy” 4th edition , Springer Co. Ltd., 270, 1997.
    49. Zumdahl, ”Chemistry” 4th edition, Houghton Miffin Company, Boston, New York, 80, 1997.

    下載圖示 校內:2006-09-02公開
    校外:2006-09-02公開
    QR CODE